Applied Stochastic Processes

Solution Sheet 7

Solution 7.1

The stochastic processes described in a) and b) are Markov chains, while the one in c) is not. Let Y_{n} denote the number which shows up in the n-th roll.
(a) We have $X_{n}=\left(X_{n-1}+1\right) \mathbb{1}_{\left\{Y_{n}<6\right\}}$. Thus, $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a Markov chain with state space \mathbb{N}_{0}. For $i, j \in\{0,1,2, \ldots\}$:

$$
r_{i, j}= \begin{cases}\frac{1}{6} & \text { if } j=0 \\ \frac{5}{6} & \text { if } j=i+1 \\ 0 & \text { otherwise }\end{cases}
$$

(b) Then $X_{n}=\max \left\{X_{n-1}, Y_{n}\right\}$. Hence, $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a Markov chain with state space $\{1, \ldots, 6\}$. We obtain the following transition probabilities for $1 \leq i, j \leq 6$:

$$
r_{i, j}=\left\{\begin{array}{cl}
0 & \text { if } j<i \\
\frac{i}{6} & \text { if } j=i \\
\frac{1}{6} & \text { if } j>i
\end{array}\right.
$$

Furthermore, noting that $r_{i, j}(n)=P\left[\max \left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}=j \mid X_{0}=i\right]$ for $j>i$, we have

$$
r_{i, j}(n)= \begin{cases}0 & \text { if } j<i \\ \left(\frac{i}{6}\right)^{n} & \text { if } j=i \\ \left(\frac{j}{6}\right)^{n}-\left(\frac{j-1}{6}\right)^{n} & \text { if } j>i\end{cases}
$$

(c) The transition probabilities at time n depend not only on X_{n}, but also on X_{n-1}. For example,

$$
\begin{aligned}
\mathbb{P}\left[X_{4}=6 \mid X_{3}=6\right] & =\mathbb{P}\left[Y_{3}=6 \mid X_{3}=6\right]+\mathbb{P}\left[Y_{3}<6, Y_{4}=6 \mid X_{3}=6\right]=\frac{6}{11}+\frac{5}{11} \cdot \frac{1}{6} \\
& <1=\mathbb{P}\left[X_{4}=6 \mid X_{3}=6, X_{2}=1\right]
\end{aligned}
$$

Therefore, this is not a Markov chain.

Solution 7.2

(a) The transition matrix is given by

$$
R=\left(\begin{array}{ccccccccc}
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{3} & 0 & 0 & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 & 0 \\
0 & \frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 & 0 & 0 & \frac{1}{3} \\
0 & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0
\end{array}\right) .
$$

(b) Fix $n \in \mathbb{N}$. If $X_{n}=0$, then $X_{n+1}=1$ and if $X_{n}=N$ then $X_{n+1}=N-1$. If $X_{n}=i$, where $i \in\{1, \ldots, N-1\}$, then we have $X_{n+1} \in\{i-1, i, i+1\}$ with

$$
\begin{aligned}
r_{i, i-1} & =\frac{i^{2}}{N^{2}} \\
r_{i, i} & =\frac{i(N-i)+(N-i) i}{N^{2}}=\frac{2 i(N-i)}{N^{2}} \\
r_{i, i+1} & =\frac{(N-i)^{2}}{N^{2}}
\end{aligned}
$$

Thus the transition matrix is

$$
R=\left(\begin{array}{ccccccc}
0 & 1 & 0 & \cdots & \cdots & \cdots & 0 \\
\frac{1}{N^{2}} & \frac{2(N-1)}{N^{2}} & \frac{(N-1)^{2}}{N^{2}} & 0 & & & \vdots \\
0 & \frac{4}{N^{2}} & \frac{4(N-2)}{N^{2}} & \frac{(N-2)^{2}}{N^{2}} & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \frac{(N-2)^{2}}{N^{2}} & \frac{4(N-2)}{N^{2}} & \frac{4}{N^{2}} & 0 \\
\vdots & & & 0 & \frac{(N-1)^{2}}{N^{2}} & \frac{2(N-1)}{N^{2}} & \frac{1}{N^{2}} \\
0 & \cdots & \cdots & \cdots & 0 & 1 & 0
\end{array}\right) .
$$

(c) We have $\mathbb{P}\left[Y_{n}=1\right]=p$ and $\mathbb{P}\left[Y_{n}=0\right]=1-p=: q, n \in \mathbb{N}$. If we identify X_{n} with the corresponding binary number $\sum_{i=1}^{k} Y_{n+i} 2^{k-i}$, the state space of $\left(X_{n}\right)_{n \in \mathbb{N}}$ is given by $\left\{0,1,2, \ldots, 2^{k}-1\right\}$. Using this representation of X_{n} we have

$$
\begin{aligned}
X_{n+1} & =\sum_{i=1}^{k} Y_{n+1+i} 2^{k-i}=Y_{n+k+1}+\sum_{i=2}^{k} Y_{n+i} 2^{k-i+1} \\
& =Y_{n+k+1}+\sum_{i=1}^{k} Y_{n+i} 2^{k-i+1}-Y_{n+1} 2^{k}=Y_{n+k+1}+2 X_{n}-Y_{n+1} 2^{k} \\
& =Y_{n+k+1}+2 X_{n} \quad \bmod 2^{k} .
\end{aligned}
$$

Hence, we have

$$
X_{n+1}= \begin{cases}2 X_{n}+1 \bmod 2^{k} & \text { with probability } p \\ 2 X_{n} \bmod 2^{k} & \text { with probability } q\end{cases}
$$

The corresponding transition matrix is thus

$$
\left.R=\left(\begin{array}{cccccccccccc}
q & p & 0 & 0 & 0 & 0 & & & & & & \\
0 & 0 & q & p & 0 & 0 & & & & & \\
0 & 0 & 0 & 0 & q & p & & & & & \\
& & & & & & \ddots & & & & \\
& & & & & & & & q & p & 0 & 0 \\
& & & & & & & 0 & 0 & q & p \\
q & p & 0 & 0 & 0 & 0 & & & & & \\
0 & 0 & q & p & 0 & 0 & & & & & \\
0 & 0 & 0 & 0 & q & p & & & & & \\
& & & & & & \ddots & & & & & \\
& & & & & & & q & p & 0 & 0 \\
& & & & & & & 0 & 0 & q & p
\end{array}\right)\right\} 2^{k} \text { rows and columns. }
$$

Solution 7.3

(a) Let $f \in L^{\infty}(E)$. There exists $K>0$ such that $\|f\|_{\infty}=K$. Let $n \in \mathbb{N}$. By definition of $R(n)$ and the conditional expectation, we have

$$
(R(n) f)(x):= \begin{cases}\mathbb{E}\left[f\left(X_{n}\right) \mid X_{n-1}=x\right] \leqslant K, & \text { for } x \in E \text { if } \mathbb{P}\left[X_{n-1}=x\right]>0, \\ f(x) \leqslant K & \text { for } x \in E \text { if } \mathbb{P}\left[X_{n-1}=x\right]=0 .\end{cases}
$$

The choice of f was arbitrary. Then, by definition of the norm of an operator, we have

$$
\|R(n)\|=\sup _{f \in L^{\infty}(E),\|f\|=1}\|R(n) f\| \leqslant 1 .
$$

(b) $\left(X_{n}\right)_{n \in \mathbb{N}}$ is by definition a discrete time Markov chain if and only if for all $n \in \mathbb{N}$ and all bounded functions $f: E \rightarrow \mathbb{R}$ we have

$$
\begin{equation*}
\mathbb{E}\left[f\left(X_{n+1}\right) \mid X_{0}, \ldots, X_{n}\right]=\mathbb{E}\left[f\left(X_{n+1}\right) \mid X_{n}\right] \mathbb{P} \text {-a.s. } \tag{1}
\end{equation*}
$$

Therefore, to establish both directions it suffices to show that $(R(n+1) f)_{X_{n}}$ is a version of the conditional expectation $\mathbb{E}\left[f\left(X_{n+1}\right) \mid X_{n}\right]$ for all $n \in \mathbb{N}$ and all bounded functions $f: E \rightarrow \mathbb{R}$. Fix $n \in \mathbb{N}$ and a bounded function $f: E \rightarrow \mathbb{R}$. Since E is at most countable and $\mathcal{E}=2^{E}$, any function $E \rightarrow \mathbb{R}$ is measurable, which implies that $(R(n+1) f)_{X_{n}}$ is $\sigma\left(X_{n}\right)$-measurable. To establish the averaging property, let $A \in \sigma\left(X_{n}\right)$. Since E is countable, we may assume without loss of generality that $A=\left\{X_{n}=x\right\}$ for some $x \in E$. If $\mathbb{P}\left[X_{n}=x\right]>0$, we have

$$
\begin{align*}
\mathbb{E}\left[\mathbb{1}_{A} \mathbb{E}\left[f\left(X_{n+1}\right) \mid X_{n}\right]\right] & =\mathbb{E}\left[\mathbb{1}_{A} f\left(X_{n+1}\right)\right]=\mathbb{E}\left[\mathbb{1}_{\left\{X_{n}=x\right\}} f\left(X_{n+1}\right)\right] \\
& =\sum_{y \in E} \mathbb{P}\left[X_{n}=x, X_{n+1}=y\right] f(y) \\
& =\sum_{y \in E} \mathbb{P}\left[X_{n}=x\right] \mathbb{P}\left[X_{n+1}=y \mid X_{n}=x\right] f(y) \\
& =\mathbb{P}\left[X_{n}=x\right] \sum_{y \in E} R_{x, y}(n+1) f(y) \\
& =\mathbb{P}\left[X_{n}=x\right](R(n+1) f)_{x} \\
& =\mathbb{E}\left[\mathbb{1}_{\left\{X_{n}=x\right\}}(R(n+1) f)_{x}\right] \\
& =\mathbb{E}\left[\mathbb{1}_{\left\{X_{n}=x\right\}}(R(n+1) f)_{X_{n}}\right] \\
& =\mathbb{E}\left[\mathbb{1}_{A}(R(n+1) f)_{X_{n}}\right], \tag{2}
\end{align*}
$$

and if $\mathbb{P}\left[X_{n}=x\right]=0$, we have

$$
\begin{align*}
\mathbb{E}\left[\mathbb{1}_{A} \mathbb{E}\left[f\left(X_{n+1}\right) \mid X_{n}\right]\right] & =\mathbb{E}\left[\mathbb{1}_{A} f\left(X_{n+1}\right)\right]=\mathbb{E}\left[\mathbb{1}_{\left\{X_{n}=x\right\}} f\left(X_{n+1}\right)\right]=0 \\
& =\mathbb{E}\left[\mathbb{1}_{\left\{X_{n}=x\right\}}(R(n+1) f)_{x}\right]=\mathbb{E}\left[\mathbb{1}_{\left\{X_{n}=x\right\}}(R(n+1) f)_{X_{n}}\right] \\
& =\mathbb{E}\left[\mathbb{1}_{A}(R(n+1) f)_{X_{n}}\right] . \tag{3}
\end{align*}
$$

(c) First, suppose that $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a discrete time Markov chain. We prove the stated equation by induction on n. The basis $n=0$ is trivial. For the induction hypothesis assume that we have shown the claim for $n \in \mathbb{N}$. Let $x_{0}, \ldots, x_{n+1} \in E$. Using part (b) with $f=\mathbb{1}_{x_{n+1}}$, the averaging property of conditional expectations and the induction hypothesis, we get

$$
\begin{align*}
\mathbb{P}\left[X_{0}=x_{0}, \ldots, X_{n+1}=x_{n+1}\right] & =\mathbb{E}\left[\mathbb{1}_{\left\{X_{0}=x_{0}\right\}} \times \cdots \times \mathbb{1}_{\left\{X_{n}=x_{n}\right\}} f\left(X_{x+1}\right)\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{\left\{X_{0}=x_{0}\right\}} \times \cdots \times \mathbb{1}_{\left\{X_{n}=x_{n}\right\}} f\left(X_{x+1}\right) \mid X_{0}, \ldots, X_{n}\right]\right] \\
& =\mathbb{E}\left[\mathbb{1}_{\left\{X_{0}=x_{0}\right\}} \times \cdots \times \mathbb{1}_{\left\{X_{n}=x_{n}\right\}} \mathbb{E}\left[f\left(X_{x+1}\right) \mid X_{0}, \ldots, X_{n}\right]\right] \\
& =\mathbb{E}\left[\mathbb{1}_{\left\{X_{0}=x_{0}\right\}} \times \cdots \times \mathbb{1}_{\left\{X_{n}=x_{n}\right\}}(R(n+1) f)_{X_{n}}\right] \\
& =\mathbb{E}\left[\mathbb{1}_{\left\{X_{0}=x_{0}\right\}} \times \cdots \times \mathbb{1}_{\left\{X_{n}=x_{n}\right\}} R_{X_{n}, x_{n+1}}(n+1)\right] \\
& =\mathbb{E}\left[\mathbb{1}_{\left\{X_{0}=x_{0}\right\}} \times \cdots \times \mathbb{1}_{\left\{X_{n}=x_{n}\right\}} R_{x_{n}, x_{n+1}}(n+1)\right] \\
& =\mathbb{E}\left[\mathbb{1}_{\left\{X_{0}=x_{0}\right\}} \times \cdots \times \mathbb{1}_{\left\{X_{n}=x_{n}\right\}}\right] R_{x_{n}, x_{n+1}}(n+1) \\
& =\mathbb{P}\left[X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right] R_{x_{n}, x_{n+1}}(n+1) \\
& =\mu_{x_{0}} R_{x_{0}, x_{1}}(1) \times \cdots \times R_{x_{n-1}, x_{n}}(n) R_{x_{n}, x_{n+1}}(n+1) \tag{4}
\end{align*}
$$

Conversely, suppose that the stated condition holds. By part (b) and Dynkin's lemma using that E is countable, it suffices to show that for all $x_{0}, \ldots, x_{n} \in E$ and all bounded functions $f: E \rightarrow \mathbb{R}$ we have

$$
\begin{equation*}
\mathbb{E}\left[\mathbb{1}_{\left\{X_{0}=x_{0}\right\}} \times \cdots \times \mathbb{1}_{\left\{X_{n}=x_{n}\right\}} f\left(X_{n+1}\right)\right]=\mathbb{E}\left[\mathbb{1}_{\left\{X_{0}=x_{0}\right\}} \times \cdots \times \mathbb{1}_{\left\{X_{n}=x_{n}\right\}}(R(n+1) f)_{X_{n}}\right] \tag{5}
\end{equation*}
$$

Again, by Dynkin's lemma using that E is countable, we may assume without loss of generality that $f=\mathbb{1}_{x_{n+1}}$ for some $x_{n+1} \in E$. Fix $x_{0}, \ldots, x_{n+1} \in E$. Then we have

$$
\begin{align*}
\mathbb{E}\left[\mathbb{1}_{\left\{X_{0}=x_{0}\right\}} \times \cdots\right. & \left.\times \mathbb{1}_{\left\{X_{n}=x_{n}\right\}} f\left(X_{n+1}\right)\right]=\mathbb{P}\left[X_{0}=x_{0}, \ldots, X_{n+1}=x_{n+1}\right] \\
& =\mu_{x_{0}} R_{x_{0}, x_{1}}(1) \times \cdots \times R_{x_{n-1}, x_{n}}(n) R_{x_{n}, x_{n+1}}(n+1) \\
& =\mathbb{P}\left[X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right] R_{x_{n}, x_{n+1}}(n+1) \\
& =\mathbb{E}\left[\mathbb{1}_{\left\{X_{0}=x_{0}\right\}} \times \cdots \times \mathbb{1}_{\left\{X_{n}=x_{n}\right\}} R_{x_{n}, x_{n+1}}(n+1)\right] \\
& =\mathbb{E}\left[\mathbb{1}_{\left\{X_{0}=x_{0}\right\}} \times \cdots \times \mathbb{1}_{\left\{X_{n}=x_{n}\right\}} R_{X_{n}, x_{n+1}}(n+1)\right] \\
& =\mathbb{E}\left[\mathbb{1}_{\left\{X_{0}=x_{0}\right\}} \times \cdots \times \mathbb{1}_{\left\{X_{n}=x_{n}\right\}}(R(n+1) f)_{X_{n}}\right] \tag{6}
\end{align*}
$$

(d) Fix $n \in \mathbb{N}$. Using part (c), we get

$$
\begin{align*}
\mathbb{E}\left[f\left(X_{n}\right)\right] & =\sum_{x_{0} \in E} \cdots \sum_{x_{n} \in X_{n}} \mathbb{P}\left[X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right] f\left(x_{n}\right) \\
& =\sum_{x_{0} \in E} \cdots \sum_{x_{n} \in X_{n}} \mu_{x_{0}} R_{x_{0}, x_{1}}(1) \times \cdots \times R_{x_{n-1}, x_{n}}(n) f\left(x_{n}\right) \\
& =\mu R(1) R(2) \cdots R(n) f . \tag{7}
\end{align*}
$$

(e) First, suppose that there exists a transition matrix R such that for all $n \in \mathbb{N}$ and all $y \in E$ we have

$$
\begin{equation*}
R_{x, y}=R_{x, y}(n+1) \quad \text { if } \quad \mathbb{P}\left[X_{n}=x\right]>0 \tag{8}
\end{equation*}
$$

But this implies that for all $y \in Y$ we have

$$
\begin{equation*}
\left(R \mathbb{1}_{y}\right)_{X_{n}}=R_{X_{n}, y}=R_{X_{n}, y}(n+1)=\left(R(n+1) \mathbb{1}_{y}\right)_{X_{n}} \quad \mathbb{P} \text {-a.s. } \tag{9}
\end{equation*}
$$

By Dynkin's lemma it follows that for all bounded functions $f: E \rightarrow \mathbb{R}$ we have

$$
\begin{equation*}
(R f)_{X_{n}}=(R(n+1) f)_{X_{n}} \quad \mathbb{P} \text {-a.s. } \tag{10}
\end{equation*}
$$

Since $(R(n+1) f)_{X_{n}}=\mathbb{E}\left[f\left(X_{n+1}\right) \mid X_{0}, \ldots, X_{n}\right] \mathbb{P}$-a.s., we may conclude that $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a homogeneous Markov chain.
Conversely, suppose that $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a homogeneous Markov chain. Then there exists a transition matrix R such that for all $n \in \mathbb{N}$ and all bounded functions $f: E \rightarrow \mathbb{R}$ we have

$$
\begin{equation*}
\mathbb{E}\left[f\left(X_{n+1}\right) \mid X_{0}, \ldots, X_{n}\right]=(R f)_{X_{n}} \quad \mathbb{P} \text {-a.s. } \tag{11}
\end{equation*}
$$

Let $n \in \mathbb{N}, x, y \in E$ with $\mathbb{P}\left[X_{0}=x\right]>0$. Then by the averaging property of conditional expectations we get with $f=\mathbb{1}_{y}$

$$
\begin{align*}
R_{x, y} & =\left(R \mathbb{1}_{y}\right)_{x}=\frac{\mathbb{E}\left[\mathbb{1}_{\left\{X_{n}=x\right\}}\left(R \mathbb{1}_{y}\right)_{x}\right]}{\mathbb{P}\left[X_{n}=x\right]}=\frac{\mathbb{E}\left[\mathbb{1}_{\left\{X_{n}=x\right\}}(R f)_{X_{n}}\right]}{\mathbb{P}\left[X_{n}=x\right]} \\
& =\frac{\mathbb{E}\left[\mathbb{1}_{\left\{X_{n}=x\right\}} f\left(X_{n+1}\right)\right]}{\mathbb{P}\left[X_{n}=x\right]}=\frac{\mathbb{P}\left[X_{n+1}=y, X_{n}=x\right]}{\mathbb{P}\left[X_{n}=x\right]} \\
& =\mathbb{P}\left[X_{n+1}=y \mid X_{n}=x\right]=R_{x, y}(n+1) \tag{12}
\end{align*}
$$

This establishes the claim.

Solution 7.4

(a) First, note that after the first jump either a ruin occurs, or the risk process f_{x} continues as if started at time 0 from initial state (capital) $x+c S_{1}-X_{1} \geq 0$ (since X_{i} are i.i.d. and independent of arrival process). Denote by H the distribution function of S_{1}, so that $\mathrm{d} H(s)=\lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s$. By the law of total probability, conditioning on the time S_{1} and size X_{1} of the first jump, we have

$$
\begin{aligned}
R(x) & =\mathbb{P}\left[f_{x}(t) \geq 0 \text { for all } t>0, x+c S_{1}-X_{1}>0\right] \\
& =\int_{\{(s, y): x+c s-y \geq 0\}} \mathbb{P}\left[f_{x+c s-y}(t) \geq 0 \text { for all } t>0\right] \mathrm{d} G(y) \mathrm{d} H(s) \\
& =\int_{0}^{\infty} \int_{0}^{x+c s} R(x+c s-y) \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} G(y) \mathrm{d} s
\end{aligned}
$$

by independence of X_{1} and S_{1}. Substitute $u=x+c s$ to obtain

$$
R(x)=\int_{x}^{\infty} \int_{0}^{u} R(u-y) \frac{\lambda}{c} \mathrm{e}^{-\lambda(u-x) / c} \mathrm{~d} G(y) \mathrm{d} u
$$

Multiply both sides by $\mathrm{e}^{-\lambda x / c}$ and rearrange:

$$
\mathrm{e}^{-\lambda x / c} R(x)=\frac{\lambda}{c} \int_{u=x}^{\infty} \mathrm{e}^{-\lambda u / c}\left(\int_{y=0}^{u} R(u-y) \mathrm{d} G(y)\right) \mathrm{d} u
$$

The right-hand side is the integral of a bounded function, thus it is continuous on $(0, \infty)$, and hence so is the left-hand side, in particular R. Then, in turn, the integrand on the RHS is continuous, hence the integral is differentiable. Differentiating both sides w.r.t. x yields

$$
\begin{equation*}
\mathrm{e}^{-\lambda x / c} R^{\prime}(x)-\frac{\lambda}{c} \mathrm{e}^{-\lambda x / c} R(x)=-\frac{\lambda}{c} \mathrm{e}^{-\lambda x / c} \int_{0}^{x} R(x-y) \mathrm{d} G(y) \tag{13}
\end{equation*}
$$

Using $R(x)=\int_{0}^{x} R^{\prime}(u) \mathrm{d} u+R(0)$ and Fubini, we can rewrite the integral

$$
\begin{align*}
\int_{0}^{x} R(x-y) \mathrm{d} G(y) & =\int_{0}^{x} \int_{0}^{x-y} R^{\prime}(u) \mathrm{d} u \mathrm{~d} G(y)+R(0) \mathbb{P}\left[X_{1} \leq x\right] \\
& =\int_{0}^{x} \int_{y}^{x} R^{\prime}(x-u) \mathrm{d} u \mathrm{~d} G(y)+R(0) \mathbb{P}\left[X_{1} \leq x\right] \\
& =\int_{0}^{x}\left(\int_{0}^{u} \mathrm{~d} G(y)\right) R^{\prime}(x-u) \mathrm{d} u+R(0) \mathbb{P}\left[X_{1} \leq x\right] \\
& =\int_{0}^{x} R^{\prime}(x-u) \mathbb{P}\left[X_{1} \leq u\right] \mathrm{d} u+R(0) \mathbb{P}\left[X_{1} \leq x\right] . \tag{14}
\end{align*}
$$

Rearranging (13) and plugging in (14) yields

$$
\begin{aligned}
R^{\prime}(x) & =\frac{\lambda}{c} R(x)-\frac{\lambda}{c} \int_{0}^{x} R(x-y) \mathrm{d} G(y) \\
& =\frac{\lambda}{c}\left(\int_{0}^{x} R^{\prime}(u) \mathrm{d} u+R(0)-\int_{0}^{x} R^{\prime}(x-u) \mathbb{P}\left[X_{1} \leq u\right] \mathrm{d} u-R(0) \mathbb{P}\left[X_{1} \leq x\right]\right) \\
& =\frac{\lambda}{c} \mathbb{P}\left[X_{1}>x\right] R(0)+\int_{0}^{x} R^{\prime}(x-u) \frac{\lambda}{c} \mathbb{P}\left[X_{1}>u\right] \mathrm{d} u,
\end{aligned}
$$

which is the renewal equation we wanted to obtain.
(b) (i) We compute,

$$
\begin{aligned}
R(x) & =\mathbb{P}\left[x+c t \geq \sum_{i=1}^{N_{t}} X_{i}, \forall t\right] \\
& =\mathbb{P}\left[x+c S_{n} \geq \sum_{i=1}^{n} X_{i}, \forall n\right] \\
& =\mathbb{P}\left[x \geq \sum_{i=1}^{n} X_{i}-c S_{n}, \forall n\right] \\
& =\mathbb{P}\left[x \geq \sup \left\{\sum_{i=1}^{n} X_{i}-c S_{n}, n \in \mathbb{N}\right\}\right] .
\end{aligned}
$$

If we show that $\sup \left\{\sum_{i=1}^{n} X_{i}-c S_{n}, n \in \mathbb{N}\right\}<\infty$ a.s., then it follows that $R(\infty)=1$. Now

$$
\mathbb{E}\left[X_{i}-c\left(S_{i}-S_{i-1}\right)\right]=\mathbb{E}\left[X_{1}\right]-c / \lambda<0,
$$

so, by the strong law of large numbers,

$$
\sum_{i=1}^{n}\left(X_{i}-c\left(S_{i}-S_{i-1}\right)\right)=\sum_{i=1}^{n} X_{i}-c S_{n} \rightarrow-\infty \quad \text { a.s., } \quad n \rightarrow \infty,
$$

thus a finite maximum exists a.s.
(ii) We define ϕ and θ as the Laplace transforms of the r.v. X_{1} and the function R^{\prime} respectively:

$$
\phi(u)=\mathbb{E}\left[\mathrm{e}^{-u X_{1}}\right], \quad \theta(u)=\int_{0}^{\infty} e^{-u x} R^{\prime}(x) \mathrm{d} x .
$$

Using the formula $\int_{0}^{\infty} \mathrm{e}^{-u x}(1-G(x)) \mathrm{d} x=(1-\hat{G}(u)) / u$ we obtain the Laplace transform version of the renewal equation computed in (a),

$$
\theta(u)=\frac{\lambda}{c} R(0)(1-\phi(u)) / u+\frac{\lambda}{c}(1-\phi(u)) \theta(u) / u
$$

Solving for θ yields

$$
\begin{equation*}
\theta(u)=\frac{\lambda R(0)(1-\phi(u)) / u}{c-\lambda(1-\phi(u)) / u} \tag{15}
\end{equation*}
$$

Notice that $\lim _{u \downarrow 0}(1-\phi(u)) / u=\mathbb{E}\left[X_{1}\right]$ (by MCT, since $\left(1-e^{-u x}\right) / u \uparrow x$ as $u \downarrow$ $0 \forall x>0)$. Hence,

$$
\lim _{u \downarrow 0} \theta(u)=\int_{0}^{\infty} R^{\prime}(x) \mathrm{d} x=\frac{\lambda \mathbb{E}\left[X_{1}\right] R(0)}{c-\lambda \mathbb{E}\left[X_{1}\right]}
$$

But since also $\int_{0}^{\infty} R^{\prime}(x) \mathrm{d} x=R(\infty)-R(0)$, we can now solve

$$
\begin{equation*}
R(0)=1-\frac{\lambda}{c} \mathbb{E}\left[X_{1}\right] \tag{16}
\end{equation*}
$$

(iii) Notice that (15) can be written as a sum of a geometric sequence,

$$
\theta(u)=R(0) \sum_{n=1}^{\infty}\left(\frac{\lambda}{c}(1-\phi(u)) / u\right)^{n}
$$

hence, using the properties of Laplace transform,

$$
R^{\prime}(t)=R(0) \sum_{n=1}^{\infty}\left(F^{\prime}\right)^{* n}(t)
$$

Thus

$$
\begin{aligned}
R(t) & =R(0)+\int_{0}^{t} R^{\prime}(u) \mathrm{d} u \\
& =R(0)\left(1+\int_{0}^{t} \sum_{n=1}^{\infty}\left(F^{\prime}\right)^{* n}(s) \mathrm{d} s\right) \\
& =R(0)(1+M(t))
\end{aligned}
$$

as required. We used in the last inequality, that for a distribution with density, the density of the n -th convolution is the n -th convolution of the distribution's density.
(c) Define the two functions

$$
F_{\alpha}(t)=\int_{0}^{t} \mathrm{e}^{\alpha x} d F(x) \mathbb{1}(t \geqslant 0), \quad h_{\alpha}(t)=R(0) \frac{F(t)-F(\infty)}{1-F(\infty)} \mathrm{e}^{\alpha t} \mathbb{1}(t \geqslant 0)
$$

F_{α} is non-arithmetic because F is. $-h_{\alpha}$ is non-increasing, non-negative and we have

$$
\begin{aligned}
\int_{0}^{\infty}-h_{\alpha}(t) d t & =\frac{R(0) \lambda}{c(1-F(\infty))} \int_{0}^{\infty} \int_{t}^{\infty} \mathbb{P}\left[X_{1}>u\right] d u d t \\
& =\frac{R(0) \lambda}{c(1-F(\infty))} \int_{0}^{\infty} \int_{0}^{u} \mathbb{P}\left[X_{1}>u\right] d t d u \\
& =\frac{R(0) \lambda}{c(1-F(\infty))} \int_{0}^{\infty} u \mathbb{P}\left[X_{1}>u\right] d u \\
& =\frac{R(0) \lambda}{2 c(1-F(\infty))} \mathbb{E}\left[X_{1}^{2}\right]<\infty
\end{aligned}
$$

By the criterion in the lecture h_{α} is DRI.
Smith's theorem for renewal equations with defect yields

$$
\lim _{t \rightarrow \infty}(1-R(t)) \mathrm{e}^{\alpha t}=\frac{R(0)}{\int_{0}^{\infty} x \mathrm{e}^{\alpha x} \frac{\lambda}{c} \mathbb{P}\left[X_{1}>x\right] d x} \int_{0}^{\infty} \frac{F(\infty)-F(t)}{1-F(\infty)} \mathrm{e}^{\alpha t} d t
$$

The right-hand side can be simplified to

$$
\begin{aligned}
\int_{0}^{\infty} F(\infty)-F(t) \mathrm{e}^{\alpha t} d t & =\int_{0}^{\infty} \int_{t}^{\infty} d F(u) \mathrm{e}^{\alpha t} d t \\
& =\int_{0}^{\infty} \int_{0}^{u} \mathrm{e}^{\alpha t} d t d F(u) \\
& =\int_{0}^{\infty} \frac{1}{\alpha}\left(\mathrm{e}^{u \alpha}-1\right) d F(u) \\
& =\frac{1}{\alpha}(1-F(\infty)) .
\end{aligned}
$$

Replacing in the previous equation and using the value of $R(0)$, we get

$$
1-R(t) \sim_{t \rightarrow \infty} \frac{\mathrm{e}^{-\alpha t}\left(c-\lambda \mathbb{E}\left[X_{1}\right]\right)}{\alpha \lambda \int_{0}^{\infty} x \mathrm{e}^{\alpha x} \mathbb{P}\left[X_{1}>x\right] d x}
$$

