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Solution 7.1

The stochastic processes described in a) and b) are Markov chains, while the one in c) is not.
Let Yn denote the number which shows up in the n-th roll.

(a) We have Xn = (Xn−1 + 1)1{Yn<6}. Thus, (Xn)n∈N is a Markov chain with state space N0.
For i, j ∈ {0, 1, 2, . . .}:

ri,j =


1
6 if j = 0,

5
6 if j = i+ 1,

0 otherwise.

(b) Then Xn = max{Xn−1, Yn}. Hence, (Xn)n∈N is a Markov chain with state space {1, . . . , 6}.
We obtain the following transition probabilities for 1 ≤ i, j ≤ 6:

ri,j =


0 if j < i,

i
6 if j = i,

1
6 if j > i.

Furthermore, noting that ri,j(n) = P
[
max{Y1, Y2, . . . , Yn} = j | X0 = i

]
for j > i, we have

ri,j(n) =


0 if j < i,(
i
6

)n if j = i,(
j
6

)n
−
(
j−1
6

)n
if j > i.

(c) The transition probabilities at time n depend not only on Xn, but also on Xn−1. For
example,

P[X4 = 6|X3 = 6] = P[Y3 = 6|X3 = 6] + P[Y3 < 6, Y4 = 6|X3 = 6] =
6

11
+

5

11
· 1
6

< 1 = P[X4 = 6|X3 = 6, X2 = 1].

Therefore, this is not a Markov chain.

Solution 7.2



(a) The transition matrix is given by

R =



0 1
2 0 1

2 0 0 0 0 0
1
3 0 1

3 0 1
3 0 0 0 0

0 1
2 0 0 0 1

2 0 0 0
1
3 0 0 0 1

3 0 1
3 0 0

0 1
4 0 1

4 0 1
4 0 1

4 0
0 0 1

3 0 1
3 0 0 0 1

3
0 0 0 1

2 0 0 0 1
2 0

0 0 0 0 1
3 0 1

3 0 1
3

0 0 0 0 0 1
2 0 1

2 0


.

(b) Fix n ∈ N. If Xn = 0, then Xn+1 = 1 and if Xn = N then Xn+1 = N − 1. If Xn = i,
where i ∈ {1, . . . , N − 1}, then we have Xn+1 ∈ {i− 1, i, i+ 1} with

ri,i−1 =
i2

N2
,

ri,i =
i(N − i) + (N − i)i

N2
=

2i(N − i)
N2

,

ri,i+1 =
(N − i)2

N2
.

Thus the transition matrix is

R =



0 1 0 · · · · · · · · · 0

1
N2

2(N−1)
N2

(N−1)2
N2 0

...

0 4
N2

4(N−2)
N2

(N−2)2
N2

. . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . (N−2)2
N2

4(N−2)
N2

4
N2 0

... 0 (N−1)2
N2

2(N−1)
N2

1
N2

0 · · · · · · · · · 0 1 0


.

(c) We have P[Yn = 1] = p and P[Yn = 0] = 1 − p =: q, n ∈ N. If we identify Xn with
the corresponding binary number

∑k
i=1 Yn+i2

k−i, the state space of (Xn)n∈N is given by
{0, 1, 2, . . . , 2k − 1}. Using this representation of Xn we have

Xn+1 =

k∑
i=1

Yn+1+i2
k−i = Yn+k+1 +

k∑
i=2

Yn+i2
k−i+1

= Yn+k+1 +
k∑
i=1

Yn+i2
k−i+1 − Yn+12

k = Yn+k+1 + 2Xn − Yn+12
k

= Yn+k+1 + 2Xn mod 2k.

Hence, we have

Xn+1 =

{
2Xn + 1 mod 2k with probability p,
2Xn mod 2k with probability q.



The corresponding transition matrix is thus

R =



q p 0 0 0 0
0 0 q p 0 0
0 0 0 0 q p

. . .
q p 0 0
0 0 q p

q p 0 0 0 0
0 0 q p 0 0
0 0 0 0 q p

. . .
q p 0 0
0 0 q p





2k rows and columns.

Solution 7.3

(a) Let f ∈ L∞(E). There exists K > 0 such that ||f ||∞ = K. Let n ∈ N. By definition of
R(n) and the conditional expectation, we have

(R(n)f) (x) :=

{
E [f(Xn) | Xn−1 = x] 6 K, for x ∈ E if P[Xn−1 = x] > 0,

f(x) 6 K for x ∈ E if P[Xn−1 = x] = 0.

The choice of f was arbitrary. Then, by definition of the norm of an operator, we have

||R(n)|| = sup
f∈L∞(E),||f ||=1

||R(n)f || 6 1.

.

(b) (Xn)n∈N is by definition a discrete time Markov chain if and only if for all n ∈ N and all
bounded functions f : E → R we have

E[f(Xn+1) |X0, . . . , Xn] = E[f(Xn+1) |Xn] P-a.s. (1)

Therefore, to establish both directions it suffices to show that (R(n + 1)f)Xn is a version
of the conditional expectation E[f(Xn+1) |Xn] for all n ∈ N and all bounded functions
f : E → R. Fix n ∈ N and a bounded function f : E → R. Since E is at most countable
and E = 2E , any function E → R is measurable, which implies that (R(n + 1)f)Xn

is σ(Xn)-measurable. To establish the averaging property, let A ∈ σ(Xn). Since E is
countable, we may assume without loss of generality that A = {Xn = x} for some x ∈ E.
If P[Xn = x] > 0, we have

E[1AE[f(Xn+1) |Xn]] = E[1Af(Xn+1)] = E[1{Xn=x}f(Xn+1)]

=
∑
y∈E

P[Xn = x,Xn+1 = y]f(y)

=
∑
y∈E

P[Xn = x]P[Xn+1 = y |Xn = x]f(y)

= P[Xn = x]
∑
y∈E

Rx,y(n+ 1)f(y)

= P[Xn = x](R(n+ 1)f)x
= E[1{Xn=x}(R(n+ 1)f)x]

= E[1{Xn=x}(R(n+ 1)f)Xn ]

= E[1A(R(n+ 1)f)Xn ], (2)



and if P[Xn = x] = 0, we have

E[1AE[f(Xn+1)|Xn]] = E[1Af(Xn+1)] = E[1{Xn=x}f(Xn+1)] = 0

= E[1{Xn=x}(R(n+ 1)f)x] = E[1{Xn=x}(R(n+ 1)f)Xn ]

= E[1A(R(n+ 1)f)Xn ]. (3)

(c) First, suppose that (Xn)n∈N is a discrete time Markov chain. We prove the stated equation
by induction on n. The basis n = 0 is trivial. For the induction hypothesis assume that
we have shown the claim for n ∈ N. Let x0, . . . , xn+1 ∈ E. Using part (b) with f = 1xn+1 ,
the averaging property of conditional expectations and the induction hypothesis, we get

P[X0 = x0, . . . , Xn+1 = xn+1] = E[1{X0=x0} × · · · × 1{Xn=xn}f(Xx+1)]

= E[E[1{X0=x0} × · · · × 1{Xn=xn}f(Xx+1) |X0, . . . , Xn]]

= E[1{X0=x0} × · · · × 1{Xn=xn}E[f(Xx+1) |X0, . . . , Xn]]

= E[1{X0=x0} × · · · × 1{Xn=xn}(R(n+ 1)f)Xn ]

= E[1{X0=x0} × · · · × 1{Xn=xn}RXn,xn+1(n+ 1)]

= E[1{X0=x0} × · · · × 1{Xn=xn}Rxn,xn+1(n+ 1)]

= E[1{X0=x0} × · · · × 1{Xn=xn}]Rxn,xn+1(n+ 1)

= P[X0 = x0, . . . , Xn = xn]Rxn,xn+1(n+ 1)

= µx0Rx0,x1(1)× · · · ×Rxn−1,xn(n)Rxn,xn+1(n+ 1). (4)

Conversely, suppose that the stated condition holds. By part (b) and Dynkin’s lemma
using that E is countable, it suffices to show that for all x0, . . . , xn ∈ E and all bounded
functions f : E → R we have

E[1{X0=x0} × · · · × 1{Xn=xn}f(Xn+1)] = E[1{X0=x0} × · · · × 1{Xn=xn}(R(n+ 1)f)Xn ] (5)

Again, by Dynkin’s lemma using that E is countable, we may assume without loss of
generality that f = 1xn+1 for some xn+1 ∈ E. Fix x0, . . . , xn+1 ∈ E. Then we have

E[1{X0=x0} × · · · × 1{Xn=xn}f(Xn+1)] = P[X0 = x0, . . . , Xn+1 = xn+1]

= µx0Rx0,x1(1)× · · · ×Rxn−1,xn(n)Rxn,xn+1(n+ 1)

= P[X0 = x0, . . . , Xn = xn]Rxn,xn+1(n+ 1)

= E[1{X0=x0} × · · · × 1{Xn=xn}Rxn,xn+1(n+ 1)]

= E[1{X0=x0} × · · · × 1{Xn=xn}RXn,xn+1(n+ 1)]

= E[1{X0=x0} × · · · × 1{Xn=xn}(R(n+ 1)f)Xn ]. (6)

(d) Fix n ∈ N. Using part (c), we get

E[f(Xn)] =
∑
x0∈E

. . .
∑

xn∈Xn

P[X0 = x0, . . . , Xn = xn]f(xn)

=
∑
x0∈E

. . .
∑

xn∈Xn

µx0Rx0,x1(1)× · · · ×Rxn−1,xn(n)f(xn)

= µR(1)R(2) · · ·R(n)f. (7)

(e) First, suppose that there exists a transition matrix R such that for all n ∈ N and all y ∈ E
we have

Rx,y = Rx,y(n+ 1) if P[Xn = x] > 0. (8)

But this implies that for all y ∈ Y we have

(R1y)Xn = RXn,y = RXn,y(n+ 1) = (R(n+ 1)1y)Xn P-a.s. (9)



By Dynkin’s lemma it follows that for all bounded functions f : E → R we have

(Rf)Xn = (R(n+ 1)f)Xn P-a.s. (10)

Since (R(n+1)f)Xn = E[f(Xn+1) |X0, . . . , Xn] P-a.s., we may conclude that (Xn)n∈N is a
homogeneous Markov chain.
Conversely, suppose that (Xn)n∈N is a homogeneous Markov chain. Then there exists a
transition matrix R such that for all n ∈ N and all bounded functions f : E → R we have

E[f(Xn+1) |X0, . . . , Xn] = (Rf)Xn P-a.s. (11)

Let n ∈ N, x, y ∈ E with P[X0 = x] > 0. Then by the averaging property of conditional
expectations we get with f = 1y

Rx,y = (R1y)x =
E[1{Xn=x}(R1y)x]

P[Xn = x]
=

E[1{Xn=x}(Rf)Xn ]

P[Xn = x]

=
E[1{Xn=x}f(Xn+1)]

P[Xn = x]
=

P[Xn+1 = y,Xn = x]

P[Xn = x]

= P[Xn+1 = y |Xn = x] = Rx,y(n+ 1)

(12)

This establishes the claim.

Solution 7.4

(a) First, note that after the first jump either a ruin occurs, or the risk process fx continues
as if started at time 0 from initial state (capital) x + cS1 − X1 ≥ 0 (since Xi are i.i.d.
and independent of arrival process). Denote by H the distribution function of S1, so that
dH(s) = λe−λs ds. By the law of total probability, conditioning on the time S1 and size
X1 of the first jump, we have

R(x) = P[fx(t) ≥ 0 for all t > 0, x+ cS1 −X1 > 0]

=

∫
{(s,y):x+cs−y≥0}

P[fx+cs−y(t) ≥ 0 for all t > 0] dG(y) dH(s)

=

∫ ∞
0

∫ x+cs

0
R(x+ cs− y)λe−λs dG(y) ds

by independence of X1 and S1. Substitute u = x+ cs to obtain

R(x) =

∫ ∞
x

∫ u

0
R(u− y)λ

c
e−λ(u−x)/c dG(y) du.

Multiply both sides by e−λx/c and rearrange:

e−λx/cR(x) =
λ

c

∫ ∞
u=x

e−λu/c
(∫ u

y=0
R(u− y) dG(y)

)
du.

The right-hand side is the integral of a bounded function, thus it is continuous on (0,∞),
and hence so is the left-hand side, in particular R. Then, in turn, the integrand on the
RHS is continuous, hence the integral is differentiable. Differentiating both sides w.r.t. x
yields

e−λx/cR′(x)− λ

c
e−λx/cR(x) = −λ

c
e−λx/c

∫ x

0
R(x− y) dG(y). (13)



Using R(x) =
∫ x
0 R

′(u) du+R(0) and Fubini, we can rewrite the integral∫ x

0
R(x− y) dG(y) =

∫ x

0

∫ x−y

0
R′(u) du dG(y) +R(0)P[X1 ≤ x]

=

∫ x

0

∫ x

y
R′(x− u) du dG(y) +R(0)P[X1 ≤ x]

=

∫ x

0

(∫ u

0
dG(y)

)
R′(x− u) du+R(0)P[X1 ≤ x]

=

∫ x

0
R′(x− u)P[X1 ≤ u] du+R(0)P[X1 ≤ x]. (14)

Rearranging (13) and plugging in (14) yields

R′(x) =
λ

c
R(x)− λ

c

∫ x

0
R(x− y) dG(y)

=
λ

c

(∫ x

0
R′(u) du+R(0)−

∫ x

0
R′(x− u)P[X1 ≤ u] du−R(0)P[X1 ≤ x]

)
=
λ

c
P[X1 > x]R(0) +

∫ x

0
R′(x− u)λ

c
P[X1 > u] du,

which is the renewal equation we wanted to obtain.

(b) (i) We compute,

R(x) = P
[
x+ ct ≥

Nt∑
i=1

Xi, ∀t
]

= P
[
x+ cSn ≥

n∑
i=1

Xi, ∀n
]

= P
[
x ≥

n∑
i=1

Xi − cSn, ∀n
]

= P
[
x ≥ sup

{ n∑
i=1

Xi − cSn, n ∈ N
}]
.

If we show that sup
{∑n

i=1Xi−cSn, n ∈ N
}
<∞ a.s., then it follows that R(∞) = 1.

Now

E[Xi − c(Si − Si−1)] = E[X1]− c/λ < 0,

so, by the strong law of large numbers,

n∑
i=1

(Xi − c(Si − Si−1)) =
n∑
i=1

Xi − cSn → −∞ a.s., n→∞,

thus a finite maximum exists a.s.
(ii) We define φ and θ as the Laplace transforms of the r.v. X1 and the function R′

respectively:

φ(u) = E[e−uX1 ], θ(u) =

∫ ∞
0

e−uxR′(x) dx.



Using the formula
∫∞
0 e−ux(1−G(x)) dx = (1− Ĝ(u))/u we obtain the Laplace trans-

form version of the renewal equation computed in (a),

θ(u) =
λ

c
R(0)(1− φ(u))/u+

λ

c
(1− φ(u))θ(u)/u.

Solving for θ yields

θ(u) =
λR(0)(1− φ(u))/u
c− λ(1− φ(u))/u

. (15)

Notice that limu↓0(1 − φ(u))/u = E[X1] (by MCT, since (1 − e−ux)/u ↑ x as u ↓
0 ∀x > 0). Hence,

lim
u↓0

θ(u) =

∫ ∞
0

R′(x) dx =
λE[X1]R(0)

c− λE[X1]
.

But since also
∫∞
0 R′(x) dx = R(∞)−R(0), we can now solve

R(0) = 1− λ

c
E[X1]. (16)

(iii) Notice that (15) can be written as a sum of a geometric sequence,

θ(u) = R(0)

∞∑
n=1

(
λ

c
(1− φ(u))/u

)n
,

hence, using the properties of Laplace transform,

R′(t) = R(0)
∞∑
n=1

(F ′)∗n(t).

Thus

R(t) = R(0) +

∫ t

0
R′(u) du

= R(0)

(
1 +

∫ t

0

∞∑
n=1

(F ′)∗n(s) ds

)
= R(0)(1 +M(t))

as required. We used in the last inequality, that for a distribution with density, the
density of the n-th convolution is the n-th convolution of the distribution’s density.

(c) Define the two functions

Fα(t) =

∫ t

0
eαxdF (x)1 (t > 0) , hα(t) = R(0)

F (t)− F (∞)

1− F (∞)
eαt1 (t > 0)

Fα is non-arithmetic because F is. −hα is non-increasing, non-negative and we have∫ ∞
0
−hα(t)dt =

R(0)λ

c (1− F (∞))

∫ ∞
0

∫ ∞
t

P [X1 > u] dudt

=
R(0)λ

c (1− F (∞))

∫ ∞
0

∫ u

0
P [X1 > u] dtdu

=
R(0)λ

c (1− F (∞))

∫ ∞
0

uP [X1 > u] du

=
R(0)λ

2c (1− F (∞))
E
[
X2

1

]
<∞.



By the criterion in the lecture hα is DRI.
Smith’s theorem for renewal equations with defect yields

lim
t→∞

(1−R(t))eαt = R(0)∫∞
0 xeαx λcP [X1 > x] dx

∫ ∞
0

F (∞)− F (t)
1− F (∞)

eαtdt.

The right-hand side can be simplified to∫ ∞
0

F (∞)− F (t)eαtdt =
∫ ∞
0

∫ ∞
t

dF (u)eαtdt

=

∫ ∞
0

∫ u

0
eαtdtdF (u)

=

∫ ∞
0

1

α
(euα − 1) dF (u)

=
1

α
(1− F (∞)).

Replacing in the previous equation and using the value of R(0), we get

1−R(t) ∼t→∞
e−αt (c− λE [X1])

αλ
∫∞
0 xeαxP [X1 > x] dx

.


