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Solution 8.1

Assume that (Xn)n∈N is the canonical Markov chain on E = {A,B,C,D,E, F} with transition
matrix

R =


0 p q r 0 0
q 0 p 0 r 0
p q 0 0 0 r
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Since D, E and F are absorbing states of (Xn)n∈N0 , we have to calculate ρA,D, ρA,E and ρA,F .
Note that due to the symmetry of the graph, we have

ρB,D = ρA,F ,

ρC,D = ρA,E . (1)

To calculate ρA,D, we consider the first step X1. Observe that the chain either jumps to state
D with probability r, or to state B with probability p, or state C with probability q. If X1 = D
the chain stays at D, if X1 = B, the probability that the chain ends up in state D is ρC,D, and
if X1 = B, the probability that the chain ends up in state D is ρB,D. Therefore we obtain the
equation

ρA,D = r + pρB,D + qρC,D.

Formally, this can be proved using the simple Markov property (Proposition 3.3):

ρA,D = PA
[
HD <∞

]
= PA

[
HD <∞, X1 = D

]
+ PA

[
HD <∞, X1 = B

]
+ PA

[
HD <∞, X1 = C

]
= PA[X1 = D] + PA

[
HD ◦ θ1 <∞, X1 = B

]
+ PA

[
HD ◦ θ1 <∞, X1 = C

]
= r + EA

[
1{HD◦θ1<∞}1{X1=B}

]
+ EA

[
1{HD◦θ1<∞}1{X1=C}

]
= r + EA

[
EA
[
1{HD◦θ1<∞}1{X1=B} | F1

]]
+ EA

[
EA
[
1{HD◦θ1<∞}1{X1=C} | F1

]]
= r + EA

[
1{X1=B}EA

[
1{HD◦θ1<∞} | F1

]]
+ EA

[
1{X1=C}EA

[
1{HD◦θ1<∞} | F1

]]
= r + EA

[
1{X1=B}EX1

[
1{HD<∞}

]]
+ EA

[
1{X1=C}EX1

[
1{HD<∞}

]]
= r + EA

[
1{X1=B}EB

[
1{HD<∞}

]]
+ EA

[
1{X1=C}EC

[
1{HD<∞}

]]
= r + EA

[
1{X1=B}

]
EB
[
1{HD<∞}

]
+ EA

[
1{X1=C}

]
EC
[
1{HD<∞}

]
= r + pρB,D + qρC,D.

Using (1) we get

ρA,D = r + pρA,F + qρA,E = 1− p− q + pρA,F + qρA,E (2)

In an analogous way, we get

ρA,E = pρA,D + qρA,F , (3)
ρA,F = pρA,E + qρA,D. (4)



Solving the system of the three linear equations (2) – (4), we obtain

ρA,D =
1− pq

1− pq + p+ q + p2 + q2
,

ρA,E =
p+ q2

1− pq + p+ q + p2 + q2
,

ρA,F =
q + p2

1− pq + p+ q + p2 + q2
.

Solution 8.2

For k = 0 the result is clear. If y ∈ C, then Py[τC > kN ] = Py[0 > kN ] = 0 for all k ≥ 0. We
will prove the inequality for all y ∈ E\C and k ≥ 1 by induction over k. For y ∈ E\C, we have

Py[τC > N ] ≤ Py[τC > n(y)] ≤ 1− ry,C(n(y)) ≤ 1− ε. (5)

For k ≥ 2, we obtain

Py[τC > kN ] = Ey
[
1{τC>kN}

]
= Ey

[
Ey
[
1{τC>kN}

∣∣ F(k−1)N
]]
.

Moreover,
1{τC>kN} = 1{τC>(k−1)N}

(
1{τC>N} ◦ θ(k−1)N

)
.

This can be seen by noting that {τC > `} = {X0, X1, . . . , X` ∈ E\C} and therefore

1{τC>N} ◦ θ(k−1)N = 1{X0,...,XN∈E\C} ◦ θ(k−1)N
= 1{X(k−1)N ,...,XkN∈E\C}.

The function 1{τC>(k−1)N} = 1{X0,X1,...,X(k−1)N∈E\C} is F(k−1)N -measurable. Applying the sim-
ple Markov property in the second step, we obtain

Py[τC > kN ] = Ey
[
1{τC>(k−1)N}Ey

[
1{τC>N} ◦ θ(k−1)N

∣∣ F(k−1)N
]]

= Ey
[
1{τC>(k−1)N}EX(k−1)N

[
1{τC>N}

]︸ ︷︷ ︸
≤(1−ε) by (5)

]
≤ (1− ε) Ey

[
1{τC>(k−1)N}

]︸ ︷︷ ︸
≤(1−ε)k−1 by induction hypothesis

≤ (1− ε)k.

Solution 8.3

(a) We have
h(x) = Px[τA < τB] = Ex

[
1{τA<τB}

]
= Ex

[
Ex
[
1{τA<τB}

∣∣ F1

]]



and on {X0 ∈ E\(A ∪B)} we obtain

1{τA<τB} =
∞∑
n=1

1{τA=n}1{τB>n}

=

∞∑
n=1

1{X1,...,Xn−1∈E\A}1{Xn∈A}1{X1,...,Xn∈E\B}

=

( ∞∑
n=1

1{X0,...,Xn−2∈E\A}1{Xn−1∈A}1{X0,...,Xn−1∈E\B}

)
◦ θ1

=

( ∞∑
n=0

1{X0,...,Xn−1∈E\A}1{Xn∈A}1{X0,...,Xn∈E\B}

)
◦ θ1

= 1{τA<τB} ◦ θ1.

Applying the simple Markov property for x ∈ E\(A ∪B) we obtain

h(x) = Ex
[
Ex
[
1{τA<τB} ◦θ1

∣∣ F1

]]
= Ex

[
EX1

[
1{τA<τB}

]]
= Ex[h(X1)] =

∑
y∈E

rx,yh(y).

(b) We only need to show that

∀x ∈ E\(A ∪B) ∃n(x) such that rx,A∪B(n(x)) > 0, (6)

then Exercise 8.2 implies

Px[τA∪B =∞] ≤ Px[τA∪B > kN ] ≤ (1− ε)k → 0 as k →∞,

hence P [τA∪B < ∞] = 1. We show (6) by contradiction. Suppose that there exists
x∗ ∈ E\(A ∪B) such that for all n ≥ 1 we have rx∗,A∪B(n) = 0. Then

Px∗ [τA∪B <∞] =
∞∑
n=1

Px∗ [τA∪B = n]︸ ︷︷ ︸
≤rx∗,A∪B(n)=0

= 0,

which contradicts the assumption of this exercise.

(c) We have

Eµ
[
h(Xn∧τA∪B )

∣∣ Fn−1] = Eµ
[
1{τA∪B<n}h(Xn∧τA∪B )

∣∣ Fn−1]
+ Eµ

[
1{τA∪B≥n}h(Xn∧τA∪B )

∣∣ Fn−1].
On {τA∪B < n} we have Xn∧τA∪B = X(n−1)∧τA∪B , hence

Eµ
[
1{τA∪B<n}h(Xn∧τA∪B )

∣∣ Fn−1] = 1{τA∪B<n}h(X(n−1)∧τA∪B ), (7)

as 1{τA∪B<n} is Fn−1-measurable. The function 1{τA∪B≥n} is also Fn−1-measurable and on
{τA∪B ≥ n} we have Xn∧τA∪B = Xn, therefore

Eµ
[
1{τA∪B≥n}h(Xn∧τA∪B )

∣∣ Fn−1] = 1{τA∪B≥n}Eµ
[
h(Xn)

∣∣ Fn−1]
= 1{τA∪B≥n}Eµ

[
h(X1) ◦ θn−1

∣∣ Fn−1]
= 1{τA∪B≥n}EXn−1 [h(X1)],

using the simple Markov property in the last step. If τA∪B ≥ n, then Xn−1 ∈ E\(A ∪B).
Using equation (∗) we obtain

EXn−1 [h(X1)] =
∑
y∈E

rXn−1,yh(y) = h(Xn−1),



hence

Eµ
[
1{τA∪B≥n}h(Xn∧τA∪B )

∣∣ Fn−1]
= 1{τA∪B≥n}h(Xn−1) = 1{τA∪B≥n}h(X(n−1)∧τA∪B ). (8)

Combining (7) and (8) yields the claim.

In part a) of this exercise we showed that h1(x) = P [τA < τB] fulfills (∗). It is clear that
h1 is 1 on A and 0 on B. Let h2 be a second solution of (∗) that is 1 on A and 0 on B.
Then h1−h2 also solves (∗) and is 0 on A∪B. By b) we have P [τA∪B <∞] = 1, so P -a.s.
for n large we have

(h1 − h2)(Xn∧τA∪B ) = 0,

hence (h1 − h2)(Xn∧τA∪B ) → 0 P -a.s. as n → ∞. The function h1 − h2 is bounded as
E\(A ∪B) is finite. Therefore also Eµ[(h1 − h2)(Xn∧τA∪B )]→ 0 as n→∞, which implies
that ((h1 − h2)(Xn∧τA∪B ))n≥0 is uniformly integrable. Martingale theory yields

(h1 − h2)(Xn∧τA∪B ) = Eµ[0 | Fn] = 0

for all n ≥ 0. This holds for all initial distributions µ, hence in particular for µ = δx,
x ∈ E\(A ∪B). For n = 0, we obtain

(h1 − h2)(X0∧τA∪B ) = (h1 − h2)(x) = 0.

Solution 8.4

(a) One finds easily that for x ∈ Z

(Reξ) (x) =
(
peiξ + qe−iξ

)
eξ(x).

Let n > 2. By induction we get (Rneξ) (x) =
(
peiξ + qe−iξ

)n
eξ(x).

(b) We compute, ∫
[−π,π)

dξ

2π
(Rneξ) (0) =

∫
[−π,π)

dξ

2π

∑
y∈Z

r0,y(n)eξ(y)

=
∑
y∈Z

r0,y(n)

∫
[−π,π)

dξ

2π
eξ(y)

= r0,0(n),

where we used the dominated convergence for the second inequality as |eξ| 6 1 and
we proved in Exercise 7.3 that ||R(n)|| = 1. Furthermore a quick computation yields∫
[−π,π)

dξ
2πeξ(y) = δ0,y, for y ∈ Z.

Computing the same integral and using (a), we obtain∫
[−π,π)

dξ

2π
(Rneξ) (0) =

∫
[−π,π)

dξ

2π

(
peiξ + qe−iξ

)n
eξ(0)

=

∫
[−π,π)

dξ

2π

(
peiξ + qe−iξ

)n
.

This proves the claim.



(c) We have

Kε =
∑
n>0

e−εnr0,0(n)

=
∑
n>0

e−εn
∫
[−π,π)

dξ

2π

(
peiξ + qe−iξ

)n
=
∑
n>0

∫
[−π,π)

dξ

2π
e−εn

(
peiξ + qe−iξ

)n
.

We have |e−ε
(
peixξ + qe−ixξ

)
| < 1, so by the dominated convergence theorem we obtain

Kε =

∫
[−π,π)

dξ

2π

∑
n>0

e−εn
(
peiξ + qe−iξ

)n
=

∫
[−π,π)

dξ

2π

1

1− e−ε (peiξ + qe−iξ)
.

By the monotone convergence theorem we have

lim
ε→0

Kε =
∑
n>0

r0,0(n).

So studying the limit of Kε for ε going to 0 gives the behaviour of the random walk. If the
limit is finite, the chain is transient, if not the chain is recurrent.
We have

1

1− e−ε (peiξ + qe−iξ)
=

1

1− e−ε (cos(ξ) + ia sin(ξ))
.

Let δ > 0. For π > |ξ| > δ,
∣∣∣ 1
1−e−ε(cos(ξ)+ia sin(ξ))

∣∣∣ 6 1
1−e−ε cos(δ)

. Therefore,∫
δ6|ξ|6π

dξ

2π

1

1− e−ε (peiξ + qe−iξ)
6

π

1− e−ε cos(δ)
.

• Assume a = 0, so that p = q = 1
2 . We have

∫ δ

−δ

dξ

2π

1

1− e−ε cos (ξ)
→∞,

as ε goes to 0. We can indeed write

1− e−ε cos (ξ) = 1− (1 +O(ε))

(
1− ξ2

2
+O(ξ4)

)
=
ξ2

2
+O(ε)

(
1− ξ2

2
+O(ξ4)

)
+O(ξ4)

which is not integrable around 0. So a symmetric random walk on Z is recurrent.
• Assume now a > 0. We need to study the quantity∫ δ

−δ

dξ

2π

1

1− e−ε (peiξ + qe−iξ)
=

∫ δ

−δ

dξ

2π

1

1− e−ε (cos(ξ) + ia sin(ξ))
.



We have

1− e−ε (cos(ξ) + ia sin(ξ)) = 1−
(
1 + ε+O(ε2)

)(
1− ξ2

2
+ iaξ +O(ξ3)

)
= −iaξ +O(ξ2)− (ε+O(ε2))

(
1 + iaξ +O(ξ2)

)
,

and there exist two positive constants C1 and C2 such that for
|ξ| 6 δ : C1ε 6

∣∣(ε+O(ε2))
(
1 + iaξ +O(ξ2)

)∣∣ 6 C2ε.
This gives∣∣∣∣∫ δ

−δ

dξ

2π

1

1− e−ε (cos(ξ) + ia sin(ξ))

∣∣∣∣ 6 ∣∣∣∣∫ δ

−δ

dξ

2π

1

−iaξ + C1ε

∣∣∣∣
=

1

|a|

∣∣∣∣∣
∫ δ

−δ

dξ

2π

1

ξ + iC1ε
a

∣∣∣∣∣
=

1

|a|

∣∣∣∣∣
∫ δ

−δ

dξ

2π

ξ

ξ2 +
C2

1ε
2

a2

− i

∫ δ

−δ

dξ

2π

C1ε
a

ξ2 +
C2

1ε
2

a2

∣∣∣∣∣
=

1

|a|

∣∣∣∣∣12 log

(
δ2 +

C2
1ε

2

a2

δ2 +
C2

1ε
2

a2

)
− i

(
Arctan

(
δa

C1ε

)
−Arctan

(
− δa

C1ε

))∣∣∣∣∣
=

1

|a|

∣∣∣∣(Arctan( δa

C1ε

)
−Arctan

(
− δa

C1ε

))∣∣∣∣ −−−→ε→0

π

|a|
.

The asymmetric random walk on Z is then transient.

(d) We define for ξ ∈ [−π, π)d, the function eξ(x) on Zd by eξ(x) := ei·ξ. By a similar reasoning
as above, we have

(Rf) (x) =

d∑
i=1

(
bi
2
eξ(x+ ei) +

bi
2
eξ(x− ei)

)
and ∫

[−π,π)

dξ

(2π)d
(Rneξ) (0) = r0,0(n)

=

∫
[−π,π)

dξ

2π

 d∑
j=1

bj
2
eiξj +

bj
2
e−iξj

n

=

∫
[−π,π)

dξ

2π

 d∑
j=1

bj
2
cos(ξj)

n

.

We now define

Kd
ε =

∑
n>0

e−εnr0,0(n)

=
∑
n>0

∫
[−π,π)

dξ

2π
e−εn

 d∑
j=1

bj
2
cos(ξj)

n

=

∫
[−π,π)

dξ

2π

1

1− e−ε
(∑d

j=1
bj
2 cos(ξj)

) .
The last equality is obtained with the dominated convergence theorem. By monotone
convergence we have limε→0K

d
ε =

∑
n>0 r0,0(n).



• Let us consider the case with d = 2. Let δ > 0. Using a Taylor expansion of cosine,
we get that for ξ ∈ [−δ, δ], and δ small enough

d∑
j=1

bj
2
cos(ξj) > 1− ( max

j∈{1,...,d}
bi + εδ)

|ξ|2

2

for some εδ > 0. Let C1 = maxj∈{1,...,d} bi + εδ. Then for some C2, C3 > 0,∫
[−δ,δ)

dξ

2π

1

1− e−ε
(∑d

j=1
bj
2 cos(ξj)

) >
∫
[−δ,δ)

dξ

2π

1

1− e−ε (1− C1|ξ|2)

>
∫
[−δ,δ)

dξ

2π

1

C2ε+ C3|ξ|2

=

∫ δ

0

rdr

C2ε+ C3r2

=
1

C3
log

(
C2ε+ δ2

C2ε

)
−−−→
ε→0

∞

We conclude that the symmetric random walk in Z2 is recurrent.
• Assume now d > 3. Similarly,

d∑
j=1

bj
2
cos(ξj) 6 1− ( min

j∈{1,...,d}
bi + ε̃δ)

|ξ|2

2

for some ε̃δ > 0. Let C4 = maxj∈{1,...,d} bi − ε̃δ. Then, for some positive constants
C5, C6, C7,∫

[−δ,δ)

dξ

2π

1

1− e−ε
(∑d

j=1
bj
2 cos(ξj)

) 6
∫
[−δ,δ)

dξ

2π

1

1− e−ε (1− C4|ξ|2)

6
∫
[−δ,δ)

dξ

2π

1

C5ε+ C6|ξ|2

=

∫ δ

0

C7r
d−1dr

C5ε+ C6r2

which is finite for all ε > 0.
The random walk in Zd for d > 3 is transient.

(e) A similar reasoning gives that asymmetric random walks in any dimension are tran-
sient.

Note: Let f be a function on Zd with sufficiently fast decay (e.g. with compact support).
For ξ ∈

[
− π, π

)d the Fourier transform of f is given by

f̂(ξ) :=
∑
x∈Zd

f(x)e−iξ·x.

One can get f back using the transformation

f(x) =

∫
[−π,π)d

dξ

(2π)d
f̂(ξ)e−iξ·x.

Let us define the scalar product for f and g square integrable by

〈f, g〉 :=
∑
x∈Zd

f(x)g(x).



By Plancherel’s theorem,

〈f, g〉 = 〈f̂ , ĝ〉 :=
∫
[−π,π)d

dξ

(2π)d
f̂(ξ)ĝ(ξ),

so that the Fourier transform is an isometry.
For a general random walk on Zd as defined in question (e), define

φ(ξ) =
d∑
j=1

(
pje

iξj + qje
−iξj
)
.

The Fourier transform operator diagonalises the operator R, by which we mean,

(̂Rf)(ξ) = φ(ξ)f̂(ξ).

Hence,

(̂Rnf)(ξ) = φ(ξ)nf̂(ξ).

By definition,

r0,0(n) = 〈δ0, Rnδ0〉.

Then,

r0,0(n) = 〈δ̂0, R̂nδ0〉
= 〈δ̂0, φnδ̂0〉

=

∫
[−π,π)d

dξ

(2π)d
φ(ξ)n,

as δ̂0 = 1.
To obtain the conditions for recurrence and transience of random walks we have actually used

the fact that the Fourier transform diagonalises the operator R.


