Applied Stochastic Processes

Solution Sheet 8

Solution 8.1

Assume that $\left(X_{n}\right)_{n \in \mathbb{N}}$ is the canonical Markov chain on $E=\{A, B, C, D, E, F\}$ with transition matrix

$$
R=\left(\begin{array}{llllll}
0 & p & q & r & 0 & 0 \\
q & 0 & p & 0 & r & 0 \\
p & q & 0 & 0 & 0 & r \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Since D, E and F are absorbing states of $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$, we have to calculate $\rho_{A, D}, \rho_{A, E}$ and $\rho_{A, F}$. Note that due to the symmetry of the graph, we have

$$
\begin{align*}
\rho_{B, D} & =\rho_{A, F} \\
\rho_{C, D} & =\rho_{A, E} \tag{1}
\end{align*}
$$

To calculate $\rho_{A, D}$, we consider the first step X_{1}. Observe that the chain either jumps to state D with probability r, or to state B with probability p, or state C with probability q. If $X_{1}=D$ the chain stays at D, if $X_{1}=B$, the probability that the chain ends up in state D is $\rho_{C, D}$, and if $X_{1}=B$, the probability that the chain ends up in state D is $\rho_{B, D}$. Therefore we obtain the equation

$$
\rho_{A, D}=r+p \rho_{B, D}+q \rho_{C, D}
$$

Formally, this can be proved using the simple Markov property (Proposition 3.3):

$$
\begin{aligned}
\rho_{A, D} & =\mathbb{P}_{A}\left[H_{D}<\infty\right] \\
& =\mathbb{P}_{A}\left[H_{D}<\infty, X_{1}=D\right]+\mathbb{P}_{A}\left[H_{D}<\infty, X_{1}=B\right]+\mathbb{P}_{A}\left[H_{D}<\infty, X_{1}=C\right] \\
& =\mathbb{P}_{A}\left[X_{1}=D\right]+\mathbb{P}_{A}\left[H_{D} \circ \theta_{1}<\infty, X_{1}=B\right]+\mathbb{P}_{A}\left[H_{D} \circ \theta_{1}<\infty, X_{1}=C\right] \\
& =r+\mathbb{E}_{A}\left[\mathbb{1}_{\left\{H_{D} \circ \theta_{1}<\infty\right\}} \mathbb{1}_{\left\{X_{1}=B\right\}}\right]+\mathbb{E}_{A}\left[\mathbb{1}_{\left\{H_{D} \circ \theta_{1}<\infty\right\}} \mathbb{1}_{\left\{X_{1}=C\right\}}\right] \\
& =r+\mathbb{E}_{A}\left[\mathbb{E}_{A}\left[\mathbb{1}_{\left\{H_{D} \circ \theta_{1}<\infty\right\}} \mathbb{1}_{\left\{X_{1}=B\right\}} \mid \mathcal{F}_{1}\right]\right]+\mathbb{E}_{A}\left[\mathbb{E}_{A}\left[\mathbb{1}_{\left\{H_{D} \circ \theta_{1}<\infty\right\}} \mathbb{1}_{\left\{X_{1}=C\right\}} \mid \mathcal{F}_{1}\right]\right] \\
& =r+\mathbb{E}_{A}\left[\mathbb{1}_{\left\{X_{1}=B\right\}} \mathbb{E}_{A}\left[\mathbb{1}_{\left\{H_{D} \circ \theta_{1}<\infty\right\}} \mid \mathcal{F}_{1}\right]\right]+\mathbb{E}_{A}\left[\mathbb{1}_{\left\{X_{1}=C\right\}} \mathbb{E}_{A}\left[\mathbb{1}_{\left\{H_{D} \circ \theta_{1}<\infty\right\}} \mid \mathcal{F}_{1}\right]\right] \\
& =r+\mathbb{E}_{A}\left[\mathbb{1}_{\left\{X_{1}=B\right\}} \mathbb{E}_{X_{1}}\left[\mathbb{1}_{\left\{H_{D}<\infty\right\}}\right]\right]+\mathbb{E}_{A}\left[\mathbb{1}_{\left\{X_{1}=C\right\}} \mathbb{E}_{X_{1}}\left[\mathbb{1}_{\left\{H_{D}<\infty\right\}}\right]\right] \\
& =r+\mathbb{E}_{A}\left[\mathbb{1}_{\left\{X_{1}=B\right\}} \mathbb{E}_{B}\left[\mathbb{1}_{\left\{H_{D}<\infty\right\}}\right]\right]+\mathbb{E}_{A}\left[\mathbb{1}_{\left\{X_{1}=C\right\}} \mathbb{E}_{C}\left[\mathbb{1}_{\left\{H_{D}<\infty\right\}}\right]\right] \\
& =r+\mathbb{E}_{A}\left[\mathbb{1}_{\left\{X_{1}=B\right\}}\right] \mathbb{E}_{B}\left[\mathbb{1}_{\left\{H_{D}<\infty\right\}}\right]+\mathbb{E}_{A}\left[\mathbb{1}_{\left\{X_{1}=C\right\}}\right] \mathbb{E}_{C}\left[\mathbb{1}_{\left\{H_{D}<\infty\right\}}\right] \\
& =r+p \rho_{B, D}+q \rho_{C, D} .
\end{aligned}
$$

Using (1) we get

$$
\begin{equation*}
\rho_{A, D}=r+p \rho_{A, F}+q \rho_{A, E}=1-p-q+p \rho_{A, F}+q \rho_{A, E} \tag{2}
\end{equation*}
$$

In an analogous way, we get

$$
\begin{align*}
& \rho_{A, E}=p \rho_{A, D}+q \rho_{A, F} \tag{3}\\
& \rho_{A, F}=p \rho_{A, E}+q \rho_{A, D} \tag{4}
\end{align*}
$$

Solving the system of the three linear equations (2) - (4), we obtain

$$
\begin{aligned}
& \rho_{A, D}=\frac{1-p q}{1-p q+p+q+p^{2}+q^{2}} \\
& \rho_{A, E}=\frac{p+q^{2}}{1-p q+p+q+p^{2}+q^{2}} \\
& \rho_{A, F}=\frac{q+p^{2}}{1-p q+p+q+p^{2}+q^{2}}
\end{aligned}
$$

Solution 8.2

For $k=0$ the result is clear. If $y \in C$, then $P_{y}\left[\tau_{C}>k N\right]=P_{y}[0>k N]=0$ for all $k \geq 0$. We will prove the inequality for all $y \in E \backslash C$ and $k \geq 1$ by induction over k. For $y \in E \backslash C$, we have

$$
\begin{equation*}
P_{y}\left[\tau_{C}>N\right] \leq P_{y}\left[\tau_{C}>n(y)\right] \leq 1-r_{y, C}(n(y)) \leq 1-\varepsilon . \tag{5}
\end{equation*}
$$

For $k \geq 2$, we obtain

$$
P_{y}\left[\tau_{C}>k N\right]=E_{y}\left[\mathbb{1}_{\left\{\tau_{C}>k N\right\}}\right]=E_{y}\left[E_{y}\left[\mathbb{1}_{\left\{\tau_{C}>k N\right\}} \mid \mathcal{F}_{(k-1) N}\right]\right] .
$$

Moreover,

$$
\mathbb{1}_{\left\{\tau_{C}>k N\right\}}=\mathbb{1}_{\left\{\tau_{C}>(k-1) N\right\}}\left(\mathbb{1}_{\left\{\tau_{C}>N\right\}} \circ \theta_{(k-1) N}\right) .
$$

This can be seen by noting that $\left\{\tau_{C}>\ell\right\}=\left\{X_{0}, X_{1}, \ldots, X_{\ell} \in E \backslash C\right\}$ and therefore

$$
\begin{aligned}
\mathbb{1}_{\left\{\tau_{C}>N\right\}} \circ \theta_{(k-1) N} & =\mathbb{1}_{\left\{X_{0}, \ldots, X_{N} \in E \backslash C\right\}} \circ \theta_{(k-1) N} \\
& =\mathbb{1}_{\left\{X_{(k-1) N}, \ldots, X_{k N} \in E \backslash C\right\}} .
\end{aligned}
$$

The function $\mathbb{1}_{\left\{\tau_{C}>(k-1) N\right\}}=\mathbb{1}_{\left\{X_{0}, X_{1}, \ldots, X_{(k-1) N} \in E \backslash C\right\}}$ is $\mathcal{F}_{(k-1) N \text {-measurable. Applying the sim- }}$ ple Markov property in the second step, we obtain

$$
\begin{aligned}
P_{y}\left[\tau_{C}>k N\right] & =E_{y}\left[\mathbb{1}_{\left\{\tau_{C}>(k-1) N\right\}} E_{y}\left[\mathbb{1}_{\left\{\tau_{C}>N\right\}} \circ \theta_{(k-1) N} \mid \mathcal{F}_{(k-1) N}\right]\right] \\
& =E_{y}[\mathbb{1}_{\left\{\tau_{C}>(k-1) N\right\}} \underbrace{E_{X_{(k-1) N}}\left[\mathbb{1}_{\left\{\tau_{C}>N\right\}}\right]}_{\leq(1-\varepsilon) \text { by }(5)}] \\
& \leq(1-\varepsilon) \underbrace{E_{y}\left[\mathbb{1}_{\left\{\tau_{C}>(k-1) N\right\}}\right]}_{\leq(1-\varepsilon)^{k-1} \text { by induction hypothesis }} \leq(1-\varepsilon)^{k} .
\end{aligned}
$$

Solution 8.3

(a) We have

$$
h(x)=P_{x}\left[\tau_{A}<\tau_{B}\right]=E_{x}\left[\mathbb{1}_{\left\{\tau_{A}<\tau_{B}\right\}}\right]=E_{x}\left[E_{x}\left[\mathbb{1}_{\left\{\tau_{A}<\tau_{B}\right\}} \mid \mathcal{F}_{1}\right]\right]
$$

and on $\left\{X_{0} \in E \backslash(A \cup B)\right\}$ we obtain

$$
\begin{aligned}
\mathbb{1}_{\left\{\tau_{A}<\tau_{B}\right\}} & =\sum_{n=1}^{\infty} \mathbb{1}_{\left\{\tau_{A}=n\right\}} \mathbb{1}_{\left\{\tau_{B}>n\right\}} \\
& =\sum_{n=1}^{\infty} \mathbb{1}_{\left\{X_{1}, \ldots, X_{n-1} \in E \backslash A\right\}} \mathbb{1}_{\left\{X_{n} \in A\right\}} \mathbb{1}_{\left\{X_{1}, \ldots, X_{n} \in E \backslash B\right\}} \\
& =\left(\sum_{n=1}^{\infty} \mathbb{1}_{\left\{X_{0}, \ldots, X_{n-2} \in E \backslash A\right\}} \mathbb{1}_{\left\{X_{n-1} \in A\right\}} \mathbb{1}_{\left\{X_{0}, \ldots, X_{n-1} \in E \backslash B\right\}}\right) \circ \theta_{1} \\
& =\left(\sum_{n=0}^{\infty} \mathbb{1}_{\left\{X_{0}, \ldots, X_{n-1} \in E \backslash A\right\}} \mathbb{1}_{\left\{X_{n} \in A\right\}} \mathbb{1}_{\left\{X_{0}, \ldots, X_{n} \in E \backslash B\right\}}\right) \circ \theta_{1} \\
& =\mathbb{1}_{\left\{\tau_{A}<\tau_{B}\right\}} \circ \theta_{1} .
\end{aligned}
$$

Applying the simple Markov property for $x \in E \backslash(A \cup B)$ we obtain

$$
h(x)=E_{x}\left[E_{x}\left[\mathbb{1}_{\left\{\tau_{A}<\tau_{B}\right\}} \circ \theta_{1} \mid \mathcal{F}_{1}\right]\right]=E_{x}\left[E_{X_{1}}\left[\mathbb{1}_{\left\{\tau_{A}<\tau_{B}\right\}}\right]\right]=E_{x}\left[h\left(X_{1}\right)\right]=\sum_{y \in E} r_{x, y} h(y) .
$$

(b) We only need to show that

$$
\begin{equation*}
\forall x \in E \backslash(A \cup B) \quad \exists n(x) \text { such that } r_{x, A \cup B}(n(x))>0 \tag{6}
\end{equation*}
$$

then Exercise 8.2 implies

$$
P_{x}\left[\tau_{A \cup B}=\infty\right] \leq P_{x}\left[\tau_{A \cup B}>k N\right] \leq(1-\varepsilon)^{k} \rightarrow 0 \text { as } k \rightarrow \infty
$$

hence $P\left[\tau_{A \cup B}<\infty\right]=1$. We show (6) by contradiction. Suppose that there exists $x^{*} \in E \backslash(A \cup B)$ such that for all $n \geq 1$ we have $r_{x^{*}, A \cup B}(n)=0$. Then

$$
P_{x^{*}}\left[\tau_{A \cup B}<\infty\right]=\sum_{n=1}^{\infty} \underbrace{P_{x^{*}}\left[\tau_{A \cup B}=n\right]}_{\leq r_{x^{*}, A \cup B}(n)=0}=0,
$$

which contradicts the assumption of this exercise.
(c) We have

$$
\begin{aligned}
E_{\mu}\left[h\left(X_{n \wedge \tau_{A \cup B}}\right) \mid \mathcal{F}_{n-1}\right]=E_{\mu}\left[\mathbb{1}_{\left\{\tau_{A \cup B}<n\right\}} h\left(X_{n \wedge \tau_{A \cup B}}\right) \mid\right. & \left.\mathcal{F}_{n-1}\right] \\
& +E_{\mu}\left[\mathbb{1}_{\left\{\tau_{A \cup B} \geq n\right\}} h\left(X_{n \wedge \tau_{A \cup B}}\right) \mid \mathcal{F}_{n-1}\right]
\end{aligned}
$$

On $\left\{\tau_{A \cup B}<n\right\}$ we have $X_{n \wedge \tau_{A \cup B}}=X_{(n-1) \wedge \tau_{A \cup B}}$, hence

$$
\begin{equation*}
E_{\mu}\left[\mathbb{1}_{\left\{\tau_{A \cup B}<n\right\}} h\left(X_{n \wedge \tau_{A \cup B}}\right) \mid \mathcal{F}_{n-1}\right]=\mathbb{1}_{\left\{\tau_{A \cup B}<n\right\}} h\left(X_{(n-1) \wedge \tau_{A \cup B}}\right) \tag{7}
\end{equation*}
$$

as $\mathbb{1}_{\left\{\tau_{A \cup B}<n\right\}}$ is \mathcal{F}_{n-1}-measurable. The function $\mathbb{1}_{\left\{\tau_{A \cup B} \geq n\right\}}$ is also \mathcal{F}_{n-1}-measurable and on $\left\{\tau_{A \cup B} \geq n\right\}$ we have $X_{n \wedge \tau_{A \cup B}}=X_{n}$, therefore

$$
\begin{aligned}
E_{\mu}\left[\mathbb{1}_{\left\{\tau_{A \cup B} \geq n\right\}} h\left(X_{n \wedge \tau_{A \cup B}}\right) \mid \mathcal{F}_{n-1}\right] & =\mathbb{1}_{\left\{\tau_{A \cup B} \geq n\right\}} E_{\mu}\left[h\left(X_{n}\right) \mid \mathcal{F}_{n-1}\right] \\
& =\mathbb{1}_{\left\{\tau_{A \cup B} \geq n\right\}} E_{\mu}\left[h\left(X_{1}\right) \circ \theta_{n-1} \mid \mathcal{F}_{n-1}\right] \\
& =\mathbb{1}_{\left\{\tau_{A \cup B} \geq n\right\}} E_{X_{n-1}}\left[h\left(X_{1}\right)\right],
\end{aligned}
$$

using the simple Markov property in the last step. If $\tau_{A \cup B} \geq n$, then $X_{n-1} \in E \backslash(A \cup B)$. Using equation $(*)$ we obtain

$$
E_{X_{n-1}}\left[h\left(X_{1}\right)\right]=\sum_{y \in E} r_{X_{n-1}, y} h(y)=h\left(X_{n-1}\right)
$$

hence

$$
\begin{align*}
E_{\mu}\left[\mathbb{1}_{\left\{\tau_{A \cup B} \geq n\right\}} h\left(X_{n \wedge \tau_{A \cup B}}\right) \mid \mathcal{F}_{n-1}\right] & \\
& =\mathbb{1}_{\left\{\tau_{A \cup B} \geq n\right\}} h\left(X_{n-1}\right)=\mathbb{1}_{\left\{\tau_{A \cup B} \geq n\right\}} h\left(X_{(n-1) \wedge \tau_{A \cup B}}\right) . \tag{8}
\end{align*}
$$

Combining (7) and (8) yields the claim.

In part a) of this exercise we showed that $h_{1}(x)=P\left[\tau_{A}<\tau_{B}\right]$ fulfills (*). It is clear that h_{1} is 1 on A and 0 on B. Let h_{2} be a second solution of $(*)$ that is 1 on A and 0 on B. Then $h_{1}-h_{2}$ also solves $(*)$ and is 0 on $A \cup B$. By b) we have $P\left[\tau_{A \cup B}<\infty\right]=1$, so P-a.s. for n large we have

$$
\left(h_{1}-h_{2}\right)\left(X_{n \wedge \tau_{A \cup B}}\right)=0,
$$

hence $\left(h_{1}-h_{2}\right)\left(X_{n \wedge \tau_{A \cup B}}\right) \rightarrow 0 P$-a.s. as $n \rightarrow \infty$. The function $h_{1}-h_{2}$ is bounded as $E \backslash(A \cup B)$ is finite. Therefore also $E_{\mu}\left[\left(h_{1}-h_{2}\right)\left(X_{n \wedge \tau_{A \cup B}}\right)\right] \rightarrow 0$ as $n \rightarrow \infty$, which implies that $\left(\left(h_{1}-h_{2}\right)\left(X_{n \wedge \tau_{A \cup B}}\right)\right)_{n \geq 0}$ is uniformly integrable. Martingale theory yields

$$
\left(h_{1}-h_{2}\right)\left(X_{n \wedge \tau_{A \cup B}}\right)=E_{\mu}\left[0 \mid \mathcal{F}_{n}\right]=0
$$

for all $n \geq 0$. This holds for all initial distributions μ, hence in particular for $\mu=\delta_{x}$, $x \in E \backslash(A \cup B)$. For $n=0$, we obtain

$$
\left(h_{1}-h_{2}\right)\left(X_{0 \wedge \tau_{A \cup B}}\right)=\left(h_{1}-h_{2}\right)(x)=0 .
$$

Solution 8.4

(a) One finds easily that for $x \in \mathbb{Z}$

$$
\left(R e_{\xi}\right)(x)=\left(p \mathrm{e}^{\mathrm{i} \xi}+q \mathrm{e}^{-\mathrm{i} \xi}\right) e_{\xi}(x)
$$

Let $n \geqslant 2$. By induction we get $\left(R^{n} e_{\xi}\right)(x)=\left(p \mathrm{e}^{\mathrm{i} \xi}+q \mathrm{e}^{-\mathrm{i} \xi}\right)^{n} e_{\xi}(x)$.
(b) We compute,

$$
\begin{aligned}
\int_{[-\pi, \pi)} \frac{d \xi}{2 \pi}\left(R^{n} e_{\xi}\right)(0) & =\int_{[-\pi, \pi)} \frac{d \xi}{2 \pi} \sum_{y \in \mathbb{Z}} r_{0, y}(n) e_{\xi}(y) \\
& =\sum_{y \in \mathbb{Z}} r_{0, y}(n) \int_{[-\pi, \pi)} \frac{d \xi}{2 \pi} e_{\xi}(y) \\
& =r_{0,0}(n)
\end{aligned}
$$

where we used the dominated convergence for the second inequality as $\left|e_{\xi}\right| \leqslant 1$ and we proved in Exercise 7.3 that $\|R(n)\|=1$. Furthermore a quick computation yields $\int_{[-\pi, \pi)} \frac{d \xi}{2 \pi} e_{\xi}(y)=\delta_{0, y}$, for $y \in \mathbb{Z}$.
Computing the same integral and using (a), we obtain

$$
\begin{aligned}
\int_{[-\pi, \pi)} \frac{d \xi}{2 \pi}\left(R^{n} e_{\xi}\right)(0) & =\int_{[-\pi, \pi)} \frac{d \xi}{2 \pi}\left(p \mathrm{e}^{\mathrm{i} \xi}+q \mathrm{e}^{-\mathrm{i} \xi}\right)^{n} e_{\xi}(0) \\
& =\int_{[-\pi, \pi)} \frac{d \xi}{2 \pi}\left(p \mathrm{e}^{\mathrm{i} \xi}+q \mathrm{e}^{-\mathrm{i} \xi}\right)^{n}
\end{aligned}
$$

This proves the claim.
(c) We have

$$
\begin{aligned}
K_{\varepsilon} & =\sum_{n \geqslant 0} \mathrm{e}^{-\varepsilon n} r_{0,0}(n) \\
& =\sum_{n \geqslant 0} \mathrm{e}^{-\varepsilon n} \int_{[-\pi, \pi)} \frac{d \xi}{2 \pi}\left(p \mathrm{e}^{\mathrm{i} \xi}+q \mathrm{e}^{-\mathrm{i} \xi}\right)^{n} \\
& =\sum_{n \geqslant 0} \int_{[-\pi, \pi)} \frac{d \xi}{2 \pi} \mathrm{e}^{-\varepsilon n}\left(p \mathrm{e}^{\mathrm{i} \xi}+q \mathrm{e}^{-\mathrm{i} \xi}\right)^{n} .
\end{aligned}
$$

We have $\left|\mathrm{e}^{-\varepsilon}\left(p \mathrm{e}^{\mathrm{i} x \xi}+q \mathrm{e}^{-\mathrm{i} x \xi}\right)\right|<1$, so by the dominated convergence theorem we obtain

$$
\begin{aligned}
K_{\varepsilon} & =\int_{[-\pi, \pi)} \frac{d \xi}{2 \pi} \sum_{n \geqslant 0} \mathrm{e}^{-\varepsilon n}\left(p \mathrm{e}^{\mathrm{i} \xi}+q \mathrm{e}^{-\mathrm{i} \xi}\right)^{n} \\
& =\int_{[-\pi, \pi)} \frac{d \xi}{2 \pi} \frac{1}{1-\mathrm{e}^{-\varepsilon}\left(p \mathrm{e}^{\mathrm{i} \xi}+q \mathrm{e}^{-\mathrm{i} \xi}\right)} .
\end{aligned}
$$

By the monotone convergence theorem we have

$$
\lim _{\varepsilon \rightarrow 0} K_{\varepsilon}=\sum_{n \geqslant 0} r_{0,0}(n) .
$$

So studying the limit of K_{ε} for ε going to 0 gives the behaviour of the random walk. If the limit is finite, the chain is transient, if not the chain is recurrent.
We have

$$
\frac{1}{1-\mathrm{e}^{-\varepsilon}\left(p \mathrm{e}^{\mathrm{i} \xi}+q \mathrm{e}^{-\mathrm{i} \xi}\right)}=\frac{1}{1-\mathrm{e}^{-\varepsilon}(\cos (\xi)+\mathrm{i} a \sin (\xi))}
$$

Let $\delta>0$. For $\pi \geqslant|\xi| \geqslant \delta,\left|\frac{1}{1-\mathrm{e}^{-\varepsilon}(\cos (\xi)+\mathrm{i} a \sin (\xi))}\right| \leqslant \frac{1}{1-\mathrm{e}^{-\varepsilon} \cos (\delta)}$. Therefore,

$$
\int_{\delta \leqslant|\xi| \leqslant \pi} \frac{d \xi}{2 \pi} \frac{1}{1-\mathrm{e}^{-\varepsilon}\left(p \mathrm{e}^{\mathrm{i} \xi}+q \mathrm{e}^{-\mathrm{i} \xi}\right)} \leqslant \frac{\pi}{1-\mathrm{e}^{-\varepsilon} \cos (\delta)} .
$$

- Assume $a=0$, so that $p=q=\frac{1}{2}$. We have

$$
\int_{-\delta}^{\delta} \frac{d \xi}{2 \pi} \frac{1}{1-\mathrm{e}^{-\varepsilon} \cos (\xi)} \rightarrow \infty
$$

as ε goes to 0 . We can indeed write

$$
\begin{aligned}
1-\mathrm{e}^{-\varepsilon} \cos (\xi) & =1-(1+O(\varepsilon))\left(1-\frac{\xi^{2}}{2}+O\left(\xi^{4}\right)\right) \\
& =\frac{\xi^{2}}{2}+O(\varepsilon)\left(1-\frac{\xi^{2}}{2}+O\left(\xi^{4}\right)\right)+O\left(\xi^{4}\right)
\end{aligned}
$$

which is not integrable around 0 . So a symmetric random walk on \mathbb{Z} is recurrent.

- Assume now $a>0$. We need to study the quantity

$$
\int_{-\delta}^{\delta} \frac{d \xi}{2 \pi} \frac{1}{1-\mathrm{e}^{-\varepsilon}\left(p \mathrm{e}^{\mathrm{i} \xi}+q \mathrm{e}^{-\mathrm{i} \xi}\right)}=\int_{-\delta}^{\delta} \frac{d \xi}{2 \pi} \frac{1}{1-\mathrm{e}^{-\varepsilon}(\cos (\xi)+\mathrm{i} a \sin (\xi))}
$$

We have

$$
\begin{aligned}
1-\mathrm{e}^{-\varepsilon}(\cos (\xi)+\mathrm{i} a \sin (\xi)) & =1-\left(1+\varepsilon+O\left(\varepsilon^{2}\right)\right)\left(1-\frac{\xi^{2}}{2}+\mathrm{i} a \xi+O\left(\xi^{3}\right)\right) \\
& =-\mathrm{i} a \xi+O\left(\xi^{2}\right)-\left(\varepsilon+O\left(\varepsilon^{2}\right)\right)\left(1+\mathrm{i} a \xi+O\left(\xi^{2}\right)\right)
\end{aligned}
$$

and there exist two positive constants C_{1} and C_{2} such that for $|\xi| \leqslant \delta: C_{1} \varepsilon \leqslant\left|\left(\varepsilon+O\left(\varepsilon^{2}\right)\right)\left(1+\mathrm{i} a \xi+O\left(\xi^{2}\right)\right)\right| \leqslant C_{2} \varepsilon$.
This gives

$$
\begin{aligned}
\left\lvert\, \int_{-\delta}^{\delta} \frac{d \xi}{2 \pi}\right. & \frac{1}{1-\mathrm{e}^{-\varepsilon}(\cos (\xi)+\mathrm{i} a \sin (\xi))}\left|\leqslant\left|\int_{-\delta}^{\delta} \frac{d \xi}{2 \pi} \frac{1}{-\mathrm{i} a \xi+C_{1} \varepsilon}\right|\right. \\
& =\frac{1}{|a|}\left|\int_{-\delta}^{\delta} \frac{d \xi}{2 \pi} \frac{1}{\xi+\mathrm{i} \frac{C_{1} \varepsilon}{a}}\right| \\
& =\frac{1}{|a|}\left|\int_{-\delta}^{\delta} \frac{d \xi}{2 \pi} \frac{\xi}{\xi^{2}+\frac{C_{1}^{2} \varepsilon^{2}}{a^{2}}}-\mathrm{i} \int_{-\delta}^{\delta} \frac{d \xi}{2 \pi} \frac{\frac{C_{1} \varepsilon}{a}}{\xi^{2}+\frac{C_{1}^{2} \varepsilon^{2}}{a^{2}}}\right| \\
& =\frac{1}{|a|}\left|\frac{1}{2} \log \left(\frac{\delta^{2}+\frac{C_{1}^{\varepsilon^{2}}}{a^{2}}}{\delta^{2}+\frac{C_{1}^{2} \varepsilon^{2}}{a^{2}}}\right)-\mathrm{i}\left(\operatorname{Arctan}\left(\frac{\delta a}{C_{1} \epsilon}\right)-\operatorname{Arctan}\left(-\frac{\delta a}{C_{1} \epsilon}\right)\right)\right| \\
& =\frac{1}{|a|}\left|\left(\operatorname{Arctan}\left(\frac{\delta a}{C_{1} \varepsilon}\right)-\operatorname{Arctan}\left(-\frac{\delta a}{C_{1} \varepsilon}\right)\right)\right| \xrightarrow[\varepsilon \rightarrow 0]{\longrightarrow} \frac{\pi}{|a|} .
\end{aligned}
$$

The asymmetric random walk on \mathbb{Z} is then transient.
(d) We define for $\xi \in[-\pi, \pi)^{d}$, the function $e_{\xi}(x)$ on \mathbb{Z}^{d} by $e_{\xi}(x):=\mathrm{e}^{\mathrm{i} \cdot \xi}$. By a similar reasoning as above, we have

$$
(R f)(x)=\sum_{i=1}^{d}\left(\frac{b_{i}}{2} e_{\xi}\left(x+e_{i}\right)+\frac{b_{i}}{2} e_{\xi}\left(x-e_{i}\right)\right)
$$

and

$$
\begin{aligned}
\int_{[-\pi, \pi)} \frac{d \xi}{(2 \pi)^{d}}\left(R^{n} e_{\xi}\right)(0) & =r_{0,0}(n) \\
& =\int_{[-\pi, \pi)} \frac{d \xi}{2 \pi}\left(\sum_{j=1}^{d} \frac{b_{j}}{2} \mathrm{e}^{\mathrm{i} \xi_{j}}+\frac{b_{j}}{2} \mathrm{e}^{-\mathrm{i} \xi_{j}}\right)^{n} \\
& =\int_{[-\pi, \pi)} \frac{d \xi}{2 \pi}\left(\sum_{j=1}^{d} \frac{b_{j}}{2} \cos \left(\xi_{j}\right)\right)^{n} .
\end{aligned}
$$

We now define

$$
\begin{aligned}
K_{\varepsilon}^{d} & =\sum_{n \geqslant 0} \mathrm{e}^{-\varepsilon n} r_{0,0}(n) \\
& =\sum_{n \geqslant 0} \int_{[-\pi, \pi \pi} \frac{d \xi}{2 \pi} \mathrm{e}^{-\varepsilon n}\left(\sum_{j=1}^{d} \frac{b_{j}}{2} \cos \left(\xi_{j}\right)\right)^{n} \\
& =\int_{[-\pi, \pi)} \frac{d \xi}{2 \pi} \frac{1}{1-\mathrm{e}^{-\varepsilon}\left(\sum_{j=1}^{d} \frac{b_{j}}{2} \cos \left(\xi_{j}\right)\right)} .
\end{aligned}
$$

The last equality is obtained with the dominated convergence theorem. By monotone convergence we have $\lim _{\varepsilon \rightarrow 0} K_{\varepsilon}^{d}=\sum_{n \geqslant 0} r_{0,0}(n)$.

- Let us consider the case with $d=2$. Let $\delta>0$. Using a Taylor expansion of cosine, we get that for $\xi \in[-\delta, \delta]$, and δ small enough

$$
\sum_{j=1}^{d} \frac{b_{j}}{2} \cos \left(\xi_{j}\right) \geqslant 1-\left(\max _{j \in\{1, \ldots, d\}} b_{i}+\epsilon_{\delta}\right) \frac{|\xi|^{2}}{2}
$$

for some $\epsilon_{\delta}>0$. Let $C_{1}=\max _{j \in\{1, \ldots, d\}} b_{i}+\epsilon_{\delta}$. Then for some $C_{2}, C_{3}>0$,

$$
\begin{aligned}
\int_{[-\delta, \delta)} \frac{d \xi}{2 \pi} \frac{1}{1-\mathrm{e}^{-\varepsilon}\left(\sum_{j=1}^{d} \frac{b_{j}}{2} \cos \left(\xi_{j}\right)\right)} & \geqslant \int_{[-\delta, \delta)} \frac{d \xi}{2 \pi} \frac{1}{1-\mathrm{e}^{-\varepsilon}\left(1-C_{1}|\xi|^{2}\right)} \\
& \geqslant \int_{[-\delta, \delta)} \frac{d \xi}{2 \pi} \frac{1}{C_{2} \varepsilon+C_{3}|\xi|^{2}} \\
& =\int_{0}^{\delta} \frac{r d r}{C_{2} \varepsilon+C_{3} r^{2}} \\
& =\frac{1}{C_{3}} \log \left(\frac{C_{2} \varepsilon+\delta^{2}}{C_{2} \varepsilon}\right) \underset{\varepsilon \rightarrow 0}{ } \infty
\end{aligned}
$$

We conclude that the symmetric random walk in \mathbb{Z}^{2} is recurrent.

- Assume now $d \geqslant 3$. Similarly,

$$
\sum_{j=1}^{d} \frac{b_{j}}{2} \cos \left(\xi_{j}\right) \leqslant 1-\left(\min _{j \in\{1, \ldots, d\}} b_{i}+\tilde{\epsilon_{\delta}}\right) \frac{|\xi|^{2}}{2}
$$

for some $\tilde{\epsilon_{\delta}}>0$. Let $C_{4}=\max _{j \in\{1, \ldots, d\}} b_{i}-\tilde{\epsilon_{\delta}}$. Then, for some positive constants C_{5}, C_{6}, C_{7},

$$
\begin{aligned}
\int_{[-\delta, \delta)} \frac{d \xi}{2 \pi} \frac{1}{1-\mathrm{e}^{-\varepsilon}\left(\sum_{j=1}^{d} \frac{b_{j}}{2} \cos \left(\xi_{j}\right)\right)} & \leqslant \int_{[-\delta, \delta)} \frac{d \xi}{2 \pi} \frac{1}{1-\mathrm{e}^{-\varepsilon}\left(1-C_{4}|\xi|^{2}\right)} \\
& \leqslant \int_{[-\delta, \delta)} \frac{d \xi}{2 \pi} \frac{1}{C_{5} \varepsilon+C_{6}|\xi|^{2}} \\
& =\int_{0}^{\delta} \frac{C_{7} r^{d-1} d r}{C_{5} \varepsilon+C_{6} r^{2}}
\end{aligned}
$$

which is finite for all $\varepsilon \geqslant 0$.
The random walk in \mathbb{Z}^{d} for $d \geqslant 3$ is transient.
(e) A similar reasoning gives that asymmetric random walks in any dimension are transient.

Note: Let f be a function on \mathbb{Z}^{d} with sufficiently fast decay (e.g. with compact support). For $\xi \in[-\pi, \pi)^{d}$ the Fourier transform of f is given by

$$
\widehat{f}(\xi):=\sum_{x \in \mathbb{Z}^{d}} f(x) \mathrm{e}^{-\mathrm{i} \xi \cdot x}
$$

One can get f back using the transformation

$$
f(x)=\int_{[-\pi, \pi)^{d}} \frac{d \xi}{(2 \pi)^{d}} \widehat{f}(\xi) \mathrm{e}^{-\mathrm{i} \xi \cdot x}
$$

Let us define the scalar product for f and g square integrable by

$$
\langle f, g\rangle:=\sum_{x \in \mathbb{Z}^{d}} \overline{f(x)} g(x)
$$

By Plancherel's theorem,

$$
\langle f, g\rangle=\langle\widehat{f}, \widehat{g}\rangle:=\int_{[-\pi, \pi)^{d}} \frac{d \xi}{(2 \pi)^{d}} \overline{\widehat{f}}(\xi) \widehat{g}(\xi)
$$

so that the Fourier transform is an isometry.
For a general random walk on \mathbb{Z}^{d} as defined in question (e), define

$$
\phi(\xi)=\sum_{j=1}^{d}\left(p_{j} \mathrm{e}^{\mathrm{i} \xi_{j}}+q_{j} \mathrm{e}^{-\mathrm{i} \xi_{j}}\right)
$$

The Fourier transform operator diagonalises the operator R, by which we mean,

$$
\widehat{(R f)}(\xi)=\phi(\xi) \widehat{f}(\xi)
$$

Hence,

$$
\widehat{\left(R^{n} f\right)}(\xi)=\phi(\xi)^{n} \widehat{f}(\xi)
$$

By definition,

$$
r_{0,0}(n)=\left\langle\delta_{0}, R^{n} \delta_{0}\right\rangle
$$

Then,

$$
\begin{aligned}
r_{0,0}(n) & =\left\langle\widehat{\delta_{0}}, \widehat{R^{n} \delta_{0}}\right\rangle \\
& =\left\langle\widehat{\delta_{0}}, \phi^{n} \widehat{\delta_{0}}\right\rangle \\
& =\int_{[-\pi, \pi)^{d}} \frac{d \xi}{(2 \pi)^{d}} \phi(\xi)^{n}
\end{aligned}
$$

as $\widehat{\delta_{0}}=1$.
To obtain the conditions for recurrence and transience of random walks we have actually used the fact that the Fourier transform diagonalises the operator R.

