# Applied Stochastic Processes 

## Solution Sheet 9

## Solution 9.1

(a) The number of molecules in $A$ can only increase or decrease by 1 . The probability that it increases (resp., decreases) is equal to the probability that a molecule from compartment $B$ (resp., $A$ ) is chosen. Thus the transition probabilities are

$$
r_{x, y}= \begin{cases}1-\frac{x}{N} & \text { if } x<N \text { and } y=x+1 \\ \frac{x}{N} & \text { if } x>0 \text { and } y=x-1 \\ 0 & \text { otherwise }\end{cases}
$$

(b) We consider the detailed balance condition, $\pi(x) r_{x, x-1}=\pi(x-1) r_{x-1, x}$, and obtain

$$
\pi(x)=\pi(x-1) \frac{r_{x-1, x}}{r_{x, x-1}}=\pi(x-1) \frac{N-x+1}{x}=\pi(0) \frac{N!}{(N-x)!\cdot x!}=\pi(0)\binom{N}{x}
$$

Furthermore, $\sum_{x=0}^{N} \pi(x)=1$, so

$$
\pi(0)=\left(\sum_{x=0}^{N}\binom{N}{x}\right)^{-1}=\left((1+1)^{N}\right)^{-1}=2^{-N}
$$

Since this distribution satisfies the detailed balance condition, it is reversible (and hence stationary, see lecture notes).

## Solution 9.2

(a) First, suppose that $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ is reversible. By a result of the lecture, we have for $i, j \in E$

$$
\mu_{i} r_{i, j}=\mathbb{P}_{\mu}\left[X_{0}=i, X_{1}=j\right]=\mathbb{P}_{\mu}\left[X_{0}=j, X_{1}=i\right]=\mu_{j} r_{j, i}
$$

so $\mu$ satisfies the detailed balance condition and is thus a reversible distribution for $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$. Conversely, suppose that $\mu$ is a reversible distribution for $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$. Let $m \in \mathbb{N}$ and $i_{0}, \ldots, i_{m} \in E$. Using the same result again and the detailed balance condition $m$ times, we obtain

$$
\begin{aligned}
\mathbb{P}_{\mu}\left[X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{m}=i_{m}\right] & =\mu_{i_{0}} r_{i_{0}, i_{1}} r_{i_{1}, i_{2}} \cdots r_{i_{m-1}, i_{m}} \\
& =r_{i_{1}, i_{0}} \mu_{i_{1}} r_{i_{1}, i_{2}} \cdots r_{i_{m-1}, i_{m}} \\
& \vdots \\
& =r_{i_{1}, i_{0}} \cdots r_{i_{m-1}, i_{m-2}} \mu_{i_{m-1}} r_{i_{m-1}, i_{m}} \\
& =r_{i_{1}, i_{0}} \cdots r_{i_{m-1}, i_{m-2}} r_{i_{m}, i_{m-1}} \mu_{i_{m}} \\
& =\mu_{i_{m}} r_{i_{m}, i_{m-1}} r_{i_{m-1}, i_{m-2}} \cdots r_{i_{1}, i_{0}} \\
& =\mathbb{P}_{\mu}\left[X_{0}=i_{m}, X_{1}=i_{m-1}, \ldots, X_{m}=i_{0}\right] .
\end{aligned}
$$

(b) Suppose that $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ is reversible. Then $\mu$ is a reversible distribution for $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ by part a). Again by part a) it suffices to show that $\mu^{\prime}$ is a reversible distribution for $\left(X_{n}^{\prime}\right)_{n \in \mathbb{N}_{0}}$. To this end, we have to check the detailed balance condition. Let $i, j \in F$. Note that we only have to consider the case $i \neq j$. Since $\mu$ satisfies the detailed balance condition, we obtain

$$
\mu_{i}^{\prime} r_{i, j}^{\prime}=\frac{\mu_{i} r_{i, j}}{\sum_{k \in F} \mu_{k}}=\frac{\mu_{j} r_{j, i}}{\sum_{k \in F} \mu_{k}}=\mu_{j}^{\prime} r_{j, i}^{\prime} .
$$

## Solution 9.3

Denote this Markov chain by $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ and its state space by $E$. Since $E$ is finite, we know that there exists at least one recurrent state $x \in E$. As $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ is irreducible, all pairs of states communicate, so all states in $E$ are recurrent. Suppose, for contradiction, that all states are null recurrent. Then we have,

$$
\lim _{n \rightarrow \infty} P_{y}\left[X_{n}=x\right]=0 \quad \forall x, y \in E .
$$

We can take the sum over $x \in E$, and swap the limit and summation (since $E$ is finite) to obtain

$$
\lim _{n \rightarrow \infty} \sum_{x \in E} P_{y}\left[X_{n}=x\right]=0 \quad \forall y \in E,
$$

which is a contradiction, since $\sum_{x \in E} P_{y}\left[X_{n}=x\right]=P_{y}\left[X_{n} \in E\right]=1$ for all $n$ and $y$. Hence there exists a positive recurrent state, so all $x \in E$ are positive recurrent.

## Solution 9.4

(a) The state $1 \in \mathbb{N}$ is recurrent, as

$$
\begin{equation*}
\rho_{1,1}:=P_{1}\left[H_{1}<\infty\right]=\mathbb{E}\left[\mathbf{1}\left(X_{1}=1\right) \mathbf{1}\left(H_{1}<\infty\right)+\mathbf{1}\left(X_{1}>1\right) \mathbf{1}\left(H_{1}<\infty\right)\right]=\sum_{i \in \mathbb{N}} \pi(i)=1 \tag{1}
\end{equation*}
$$

Moreover, in case the Markov chain jumps to state $i$ starting from 1, then it will return to state 1 in exactly $i$ steps. Hence $E_{1}\left[H_{1}\right]=\sum_{i \in \mathbb{N}} i \pi(i)<\infty$ by assumption, so state 1 is positive recurrent.
Define

$$
m:=\sup \{i \in \mathbb{N}: \pi(i)>0\}
$$

If $m=\infty$, then all states $i \in \mathbb{N}$ are connected with 1 and thus positive recurrent, by Theorem 3.16. If $m<\infty$, then all states $i \in\{1,2, \ldots, m\}$ are connected with 1 and thus positive recurrent, by applying a result on irreducible homogeneous Markov chains from the course, with $E$ restricted to $\{1,2, \ldots, m\}$.
The states $i \in \mathbb{N} \backslash\{1,2, \ldots, m\}=: F$ do not communicate as $i+1 \rightarrow i$ for all $i \in F$, but not $i \rightarrow i+1$. The states $i \in F$ are transient, as for all $i \in F$ (defining $\rho_{i, j}$ similarly to (1)),

$$
\rho_{i, i}=r_{i, i-1} \cdot \ldots \cdot r_{2,1} \rho_{1, i}=\rho_{1, i}=0<1 .
$$

(b) Let $X$ be an integer-valued random variable with distribution $\pi$. By assumption,

$$
E[X]=\sum_{i \in \mathbb{N}} i \pi(i)<\infty .
$$

We define a distribution $\left(\nu_{i}\right)_{i \in \mathbb{N}}$ by

$$
\nu_{i}:=\frac{P[X \geq i]}{E[X]}, \quad i \in \mathbb{N} .
$$

To show that $\left(\nu_{i}\right)_{i \in \mathbb{N}}$ is a stationary distribution, we check $\nu_{j}=\sum_{i \in \mathbb{N}} \nu_{i} r_{i, j} \quad \forall j \in \mathbb{N}$ :

$$
\begin{aligned}
\sum_{i \in \mathbb{N}} \nu_{i} r_{i, j} & =\nu_{1} r_{1, j}+\nu_{j+1} r_{j+1, j} \\
& =\frac{P[X \geq 1]}{E[X]} \pi(j)+\frac{P[X \geq j+1]}{E[X]} \\
& =(1 \cdot P[X=j]+P[X \geq j+1]) / E[X] \\
& =P[X \geq j] / E[X] \\
& =\nu_{j} .
\end{aligned}
$$

The stationary distribution $\left(\nu_{i}\right)_{i \in \mathbb{N}}$ is reversible if and only if support $(\pi)=\{1,2\}$, i.e. $\pi(1)+\pi(2)=1$. If support $(\pi) \neq\{1,2\}$, then there exists $i \geq 3$ with $\pi(i)>0$. Thus, $\nu_{1} r_{1, i}=\nu_{1} \pi(i)>0$, but $\nu_{i} r_{i, 1}=0$. Hence $\nu_{1} r_{1, i} \neq \nu_{i} r_{i, 1}$, and $X$ is not reversible.

Remark. This example shows that a stationary distribution is not necessarily reversible. It also shows that one cannot skip the condition of irreducibility to have equivalence between existence of a stationary distribution and positive recurrence of all the states.

## Solution 9.5

(a)
(i)+(ii) Both states are connected. As the state space is finite, both states are thus recurrent. However, we can prove directly that the states are recurrent. The state 0 is recurrent as

$$
\begin{aligned}
\rho_{00} & :=P_{0}\left[\bigcup_{k=1}^{\infty}\left\{X_{k}=0, X_{k-1}=1, \ldots, X_{1}=1\right\}\right] \\
& =\sum_{k=1}^{\infty} P_{0}\left[X_{1}=1, \ldots, X_{k-1}=1, X_{k}=0\right] \\
& =1-p+p r \sum_{n=0}^{\infty}(1-r)^{n} \\
& =1-p+p r \frac{1}{r} \\
& =1
\end{aligned}
$$

Analogously, we can prove that the state 1 is recurrent.
(iii)

$$
P=\left[\begin{array}{cc}
1-p & p \\
r & 1-r
\end{array}\right]=T D T^{-1}
$$

where

$$
D=\left[\begin{array}{cc}
1 & 0 \\
0 & 1-p-r
\end{array}\right], T=\left[\begin{array}{cc}
1 & -p \\
1 & r
\end{array}\right], T^{-1}=\frac{1}{p+r}\left[\begin{array}{cc}
r & p \\
-1 & 1
\end{array}\right] .
$$

It follows

$$
P^{n}=T D^{n} T^{-1}=T\left[\begin{array}{cc}
1 & 0 \\
0 & (1-p-r)^{n}
\end{array}\right] T^{-1} .
$$

(iv)

$$
\lim _{n \rightarrow \infty} P^{n}=T \lim _{n \rightarrow \infty} D^{n} T^{-1}=T\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] T^{-1}=\frac{1}{p+r}\left[\begin{array}{ll}
r & p \\
r & p
\end{array}\right] .
$$

b) (i) The states 0 and 3 are recurrent. The states 1 and 2 are transient.
(ii) The states 0 and 3 are not connected.
(iii)

$$
P=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
q & 0 & p & 0 \\
0 & p & 0 & q \\
0 & 0 & 0 & 1
\end{array}\right]=T D T^{-1},
$$

with

$$
\begin{gathered}
D=\left[\begin{array}{cccc}
p & 0 & 0 & 0 \\
0 & -p & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \\
T=\left[\begin{array}{cccc}
0 & 0 & -p & 1+p \\
1 & -1 & 0 & 1 \\
1 & 1 & 1-p & p \\
0 & 0 & 1 & 0
\end{array}\right], T^{-1}=\frac{1}{2}\left[\begin{array}{cccc}
-1 & 1 & 1 & -1 \\
\frac{1-p}{p+1} & -1 & 1 & \frac{p-1}{p+1} \\
0 & 0 & 0 & 2 \\
\frac{2}{p+1} & 0 & 0 & \frac{2 p}{p+1}
\end{array}\right] . \\
P^{n}=T D^{n} T^{-1}=T\left[\begin{array}{cccc}
p^{n} & 0 & 0 & 0 \\
0 & (-p)^{n} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] T^{-1}
\end{gathered}
$$

(iv)

$$
\lim _{n \rightarrow \infty} P^{n}=T \lim _{n \rightarrow \infty} D^{n} T^{-1}=T\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] T^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{1}{1+p} & 0 & 0 & \frac{p}{1+p} \\
\frac{p}{1+p} & 0 & 0 & \frac{1}{1+p} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(c) (i) The state 3 is recurrent. The states 0,1 and 2 are transient.
(iii)

$$
P=\left[\begin{array}{cccc}
q & p & 0 & 0 \\
0 & q & p & 0 \\
0 & 0 & q & p \\
0 & 0 & 0 & 1
\end{array}\right]=T(D+N) T^{-1},
$$

where

$$
\begin{gathered}
D=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1-p & 0 & 0 \\
0 & 0 & 1-p & 0 \\
0 & 0 & 0 & 1-p
\end{array}\right], N=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \\
T=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 0 & \frac{1}{p} & 0 \\
1 & 0 & 0 & \frac{1}{p^{2}} \\
1 & 0 & 0 & 0
\end{array}\right], T^{-1}=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & -1 \\
0 & p & 0 & -p \\
0 & 0 & p^{2} & -p^{2}
\end{array}\right] .
\end{gathered}
$$

It follows

$$
P^{n}=T(D+N)^{n} T^{-1},
$$

with

$$
(D+N)^{n}=\sum_{k=0}^{n}\binom{n}{k} D^{n-k} N^{k} .
$$

(iv)

$$
\lim _{n \rightarrow \infty} P^{n}=T \lim _{n \rightarrow \infty}(D+N)^{n} T^{-1}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

