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Exercise 11.1

We have seen in the lecture that the non-explosion assumption is equivalent to∑
n>0

λ(X ′n)−1 =∞, P′x-a.s. for all x ∈ E.

(a) ∑
n>0

λ(X ′n)−1 >
∑
n>0

c−1 =∞.

(b) We have supx∈E λ(x) = c <∞, hence (b) follows from (a).

(c) P′x[∩n>0{X ′n ∈ T }] = 0 implies that for P′x-a.a. ω there is n0(ω) <∞ such thatX ′n(ω) ∈ T c
for all n > n0(ω). This implies that P′x-a.s. there is a state y ∈ T c, which the chain visits
infinitely often. Define Nx =

∑∞
n=0 1 (X ′n = x). Then P′x-a.s. there exists y ∈ T c, such

that Ny =∞. We have ∑
n>0

λ(X ′n)−1 =
∑
x∈E

Nx

λ(x)
,

hence the assumption λ(y) <∞ implies the claim.

Take the Markov chain in continuous time on the state space N that starts at 0 P-a.s., that
has the following jump rate and transition probability

λ(x) =(x+ 1)2 for x ∈ N,

qx,y =

{
1 if y = x+ 1

0 otherwise.

We have then ∑
n>0

λ(X ′n)−1 =
∑
n>1

1

n2
=
π2

6
<∞,

and this chain does not satisfy the non-explosion assumption.

Exercise 11.2

R(t) ist the solution of the Kolmogorov backward equation (KBE)

R′(t) = ΛR(t) , t > 0 , R(0) = id



As the state space is finite, the unique solution to both the KBE and the Kolmogorov forward
equation (KFE) is given by

R(t) = exp(Λt) , t > 0

Note that Λ = BDB−1 with

D =

 0 0 0
0 −2 0
0 0 −3

B =

 1 1 7
1 5 −11
1 −3 1

 , B−1 =
1

48

 14 11 23
6 3 −9
4 −2 −2


Thus,

R(t) = exp(Λt)

= B exp(Dt)B−1

= B

 1 0 0
0 e−2t 0
0 0 e−3t

B−1

= 1
48

 14 + 6e−2t + 28e−3t 11 + 3e−2t − 14e−3t 23− 9e−2t − 14e−3t

14 + 30e−2t − 44e−3t 11 + 15e−2t + 22e−3t 23− 45e−2t + 22e−3t

14− 18e−2t + 4e−3t 11− 9e−2t − 2e−3t 23 + 27e−2t − 2e−3t



Exercise 11.3

Note that we need to assume that Xt is integrable for all t > 0.

(a) We have λ(i) = λi + µi = (λ+ µ)i+ a. With Nx =
∑∞

n=0 1 (X ′n = x) we obtain

∑
n>0

λ(X ′n)−1 =
∞∑
i=0

Ni

λ(i)
>
∞∑
k=0

1

(λ+ µ)i+ a
=∞,

and hence the non-explosion assumption holds.

(b) The forward Kolmogorov differential equations for a birth and death process are given by

r′i,0(t) = −λ0ri,0(t) + µ1ri,1(t),

r′i,j(t) = λj−1ri,j−1(t)− (λj + µj)ri,j(t) + µj+1ri,j+1(t), j > 1,

and the boundary condition ri,j(0) = δij . For linear growth with immigration these equa-
tions simplify to

r′i,0(t) = −ari,0(t) + µri,1(t),

r′i,j(t) = (λ(j − 1) + a)ri,j−1(t)− ((λ+ µ)j + a)ri,j(t) + µ(j + 1)ri,j+1(t), j > 1.

We obtain, assuming absolute summability of the middle term uniformly in t on compact



sets,

M ′(t) =
∞∑
j=1

jr′i,j(t) = a
∞∑
j=1

j(ri,j−1(t)− ri,j(t))︸ ︷︷ ︸
=1

+ λ
∞∑
j=1

j((j − 1)ri,j−1(t)− jri,j(t))︸ ︷︷ ︸
=M(t)

+ µ

∞∑
j=1

j(−jri,j(t) + (j + 1)ri,j+1(t))︸ ︷︷ ︸
=−M(t)

= a+ (λ− µ)M(t).

The initial condition is clear.

(c) The solution of the equation is given by

M(t) = at+ i if µ = λ,

and
M(t) =

a

λ− µ
(e(λ−µ)t − 1) + ie(λ−µ)t if λ 6= µ.

Exercise 11.4

(a) By the definition of the chain (X ′n)n>0, it is clear that all states of the discrete skeleton are
connected, hence the chain is irreducible. We have as well that for n > 2

P′0[H ′0 = n] = qpn−2,

where we defined H ′0 = inf{k > 1, X ′k = 0}. We then obtain E′0[H ′0] =
∑∞

n=2 nqp
n−2 <∞,

so that 0 and hence all x ∈ N are positive recurrent for (X ′n)n>0.

(b) For all x ∈ E, with probability 1 under P′x, we have∑
n>0

λ(X ′n)−1 > λ(y)−1
∑
n>0

1
(
X ′n = y

)
=∞, P′x-a.s.

as λ(y) > 0 and all y ∈ E are recurrent.
This implies that (Xt)t>0 is a pure jump process with no explosion for any jump rate
function λ(·) : N→ (0,∞).

(c) We have

E0[H̃0] = EP0

 H′0∑
n=1

(Sn − Sn−1)


= EP′0

H′0−1∑
n=0

∫ ∞
0

uλ(X ′n)e−λ(X
′
n)udu


= EP′0

H′0−1∑
n=0

λ(X ′n)−1

 ,



and given the way the chain (X ′n)n>0 moves

=
1

λ(0)
+ EP′0

H′0−1∑
n=1

λ(n)−1


=

1

λ(0)
+
∞∑
m=1

1

λ(m)
P′0[H ′0 > m]

=
1

λ(0)
+

∞∑
m=1

1

λ(m)
pm−1.

(d) If we choose λ(x) = px, it is immediate from (c) that E0[H̃0] =∞, so (X ′n)n>0 is positive
recurrent, but E0[H̃0] =∞ (with 0 not absorbing) so 0 is not positive recurrent for (Xt)t>0.

Exercise 11.5

(a) Note that

qi,i+1 =
λi

λi + µi
, qi,i−1 =

µi
λi + µi

, qi,j = 0 for all j /∈ {i− 1, i+ 1}

The generator matrix Λ is given by

Λ =


−λ0 λ0
µ1 − (λ1 + µ1) λ1

µ2 − (λ2 + µ2) λ2
. . . . . . . . .


We have to solve πTΛ = 0, π = (πi)i∈N, with π0 = 1. This is equivalent to

−λ0 + µ1π1 = 0

λiπi − (λi+1 + µi+1)πi+1 + µi+2πi+2 = 0 for all i ∈ N

Summing up over {0, 1, . . . , n− 2} yields

n−2∑
i=0

λiπi +

n∑
i=0

µiπi =

n−1∑
i=0

λiπi +

n−1∑
i=0

µiπi

It follows
µnπn = λn−1πn−1

and thus for n ≥ 1:

πn =
λn−1
µn

πn−1 = . . . =

∏n−1
i=0 λi∏n
i=1 µi

A stationary distribution exists if and only if

∞∑
n=1

πn =

∞∑
n=1

∏n−1
i=0 λi∏n
i=1 µi

<∞



(b) For a stationary distribution ν = (νi)i∈N

∞∑
i=0

νi = 1

must hold. Hence, the stationary distribution ν is given by

νn =
πn

1 +
∑∞

n=1

∏n−1
i=0 λi∏n
i=1 µi

.


