Applied Stochastic Processes

Solution Sheet 11

Exercise 11.1

We have seen in the lecture that the non-explosion assumption is equivalent to

$$
\sum_{n \geqslant 0} \lambda\left(X_{n}^{\prime}\right)^{-1}=\infty, \quad \mathbb{P}_{x}^{\prime} \text {-a.s. for all } x \in E
$$

(a)

$$
\sum_{n \geqslant 0} \lambda\left(X_{n}^{\prime}\right)^{-1} \geqslant \sum_{n \geqslant 0} c^{-1}=\infty
$$

(b) We have $\sup _{x \in E} \lambda(x)=c<\infty$, hence (b) follows from (a).
(c) $\mathbb{P}_{x}^{\prime}\left[\cap_{n \geqslant 0}\left\{X_{n}^{\prime} \in \mathcal{T}\right\}\right]=0$ implies that for \mathbb{P}_{x}^{\prime}-a.a. ω there is $n_{0}(\omega)<\infty$ such that $X_{n}^{\prime}(\omega) \in \mathcal{T}^{c}$ for all $n \geqslant n_{0}(\omega)$. This implies that \mathbb{P}_{x}^{\prime}-a.s. there is a state $y \in T^{c}$, which the chain visits infinitely often. Define $N_{x}=\sum_{n=0}^{\infty} \mathbb{1}\left(X_{n}^{\prime}=x\right)$. Then \mathbb{P}_{x}^{\prime}-a.s. there exists $y \in T^{c}$, such that $N_{y}=\infty$. We have

$$
\sum_{n \geqslant 0} \lambda\left(X_{n}^{\prime}\right)^{-1}=\sum_{x \in E} \frac{N_{x}}{\lambda(x)},
$$

hence the assumption $\lambda(y)<\infty$ implies the claim.

Take the Markov chain in continuous time on the state space \mathbb{N} that starts at $0 \mathbb{P}$-a.s., that has the following jump rate and transition probability

$$
\begin{aligned}
& \lambda(x)=(x+1)^{2} \text { for } x \in \mathbb{N} \\
& q_{x, y}= \begin{cases}1 & \text { if } y=x+1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

We have then

$$
\sum_{n \geqslant 0} \lambda\left(X_{n}^{\prime}\right)^{-1}=\sum_{n \geqslant 1} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}<\infty
$$

and this chain does not satisfy the non-explosion assumption.

Exercise 11.2

$R(t)$ ist the solution of the Kolmogorov backward equation (KBE)

$$
R^{\prime}(t)=\Lambda R(t), t \geqslant 0, \quad R(0)=\mathrm{id}
$$

As the state space is finite, the unique solution to both the KBE and the Kolmogorov forward equation (KFE) is given by

$$
R(t)=\exp (\Lambda t), t \geqslant 0
$$

Note that $\Lambda=B D B^{-1}$ with

$$
D=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -3
\end{array}\right) B=\left(\begin{array}{ccc}
1 & 1 & 7 \\
1 & 5 & -11 \\
1 & -3 & 1
\end{array}\right), B^{-1}=\frac{1}{48}\left(\begin{array}{ccc}
14 & 11 & 23 \\
6 & 3 & -9 \\
4 & -2 & -2
\end{array}\right)
$$

Thus,

$$
\begin{aligned}
R(t) & =\exp (\Lambda t) \\
& =B \exp (D t) B^{-1} \\
& =B\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{-2 t} & 0 \\
0 & 0 & e^{-3 t}
\end{array}\right) B^{-1} \\
& =\frac{1}{48}\left(\begin{array}{ccc}
14+6 e^{-2 t}+28 e^{-3 t} & 11+3 e^{-2 t}-14 e^{-3 t} & 23-9 e^{-2 t}-14 e^{-3 t} \\
14+30 e^{-2 t}-44 e^{-3 t} & 11+15 e^{-2 t}+22 e^{-3 t} & 23-45 e^{-2 t}+22 e^{-3 t} \\
14-18 e^{-2 t}+4 e^{-3 t} & 11-9 e^{-2 t}-2 e^{-3 t} & 23+27 e^{-2 t}-2 e^{-3 t}
\end{array}\right)
\end{aligned}
$$

Exercise 11.3

Note that we need to assume that X_{t} is integrable for all $t \geqslant 0$.
(a) We have $\lambda(i)=\lambda_{i}+\mu_{i}=(\lambda+\mu) i+a$. With $N_{x}=\sum_{n=0}^{\infty} \mathbb{1}\left(X_{n}^{\prime}=x\right)$ we obtain

$$
\sum_{n \geqslant 0} \lambda\left(X_{n}^{\prime}\right)^{-1}=\sum_{i=0}^{\infty} \frac{N_{i}}{\lambda(i)} \geqslant \sum_{k=0}^{\infty} \frac{1}{(\lambda+\mu) i+a}=\infty
$$

and hence the non-explosion assumption holds.
(b) The forward Kolmogorov differential equations for a birth and death process are given by

$$
\begin{aligned}
r_{i, 0}^{\prime}(t) & =-\lambda_{0} r_{i, 0}(t)+\mu_{1} r_{i, 1}(t) \\
r_{i, j}^{\prime}(t) & =\lambda_{j-1} r_{i, j-1}(t)-\left(\lambda_{j}+\mu_{j}\right) r_{i, j}(t)+\mu_{j+1} r_{i, j+1}(t), j \geqslant 1
\end{aligned}
$$

and the boundary condition $r_{i, j}(0)=\delta_{i j}$. For linear growth with immigration these equations simplify to

$$
\begin{aligned}
r_{i, 0}^{\prime}(t) & =-a r_{i, 0}(t)+\mu r_{i, 1}(t) \\
r_{i, j}^{\prime}(t) & =(\lambda(j-1)+a) r_{i, j-1}(t)-((\lambda+\mu) j+a) r_{i, j}(t)+\mu(j+1) r_{i, j+1}(t), j \geqslant 1
\end{aligned}
$$

We obtain, assuming absolute summability of the middle term uniformly in t on compact
sets,

$$
\begin{aligned}
M^{\prime}(t)=\sum_{j=1}^{\infty} j r_{i, j}^{\prime}(t)= & \underbrace{\sum_{j=1}^{\infty} j\left(r_{i, j-1}(t)-r_{i, j}(t)\right)}_{=1} \\
& +\lambda \underbrace{\sum_{j=1}^{\infty} j\left((j-1) r_{i, j-1}(t)-j r_{i, j}(t)\right)}_{=M(t)} \\
& +\mu \underbrace{\sum_{j=1}^{\infty} j\left(-j r_{i, j}(t)+(j+1) r_{i, j+1}(t)\right)}_{=-M(t)}
\end{aligned}
$$

$$
=a+(\lambda-\mu) M(t)
$$

The initial condition is clear.
(c) The solution of the equation is given by

$$
M(t)=a t+i \quad \text { if } \mu=\lambda
$$

and

$$
M(t)=\frac{a}{\lambda-\mu}\left(e^{(\lambda-\mu) t}-1\right)+i e^{(\lambda-\mu) t} \quad \text { if } \lambda \neq \mu
$$

Exercise 11.4

(a) By the definition of the chain $\left(X_{n}^{\prime}\right)_{n \geqslant 0}$, it is clear that all states of the discrete skeleton are connected, hence the chain is irreducible. We have as well that for $n \geqslant 2$

$$
\mathbb{P}_{0}^{\prime}\left[H_{0}^{\prime}=n\right]=q p^{n-2},
$$

where we defined $H_{0}^{\prime}=\inf \left\{k \geqslant 1, X_{k}^{\prime}=0\right\}$. We then obtain $\mathbb{E}_{0}^{\prime}\left[H_{0}^{\prime}\right]=\sum_{n=2}^{\infty} n q p^{n-2}<\infty$, so that 0 and hence all $x \in \mathbb{N}$ are positive recurrent for $\left(X_{n}^{\prime}\right)_{n \geqslant 0}$.
(b) For all $x \in E$, with probability 1 under \mathbb{P}_{x}^{\prime}, we have

$$
\sum_{n \geqslant 0} \lambda\left(X_{n}^{\prime}\right)^{-1} \geqslant \lambda(y)^{-1} \sum_{n \geqslant 0} \mathbb{1}\left(X_{n}^{\prime}=y\right)=\infty, \mathbb{P}_{x}^{\prime} \text {-a.s. }
$$

as $\lambda(y)>0$ and all $y \in E$ are recurrent.
This implies that $\left(X_{t}\right)_{t \geqslant 0}$ is a pure jump process with no explosion for any jump rate function $\lambda(\cdot): \mathbb{N} \rightarrow(0, \infty)$.
(c) We have

$$
\begin{aligned}
E_{0}\left[\tilde{H}_{0}\right] & =E^{\mathbb{P}_{0}}\left[\sum_{n=1}^{H_{0}^{\prime}}\left(S_{n}-S_{n-1}\right)\right] \\
& =E^{\mathbb{P}_{0}^{\prime}}\left[\sum_{n=0}^{H_{0}^{\prime}-1} \int_{0}^{\infty} u \lambda\left(X_{n}^{\prime}\right) e^{-\lambda\left(X_{n}^{\prime}\right) u} d u\right] \\
& =E^{\mathbb{P}_{0}^{\prime}}\left[\sum_{n=0}^{H_{0}^{\prime}-1} \lambda\left(X_{n}^{\prime}\right)^{-1}\right],
\end{aligned}
$$

and given the way the chain $\left(X_{n}^{\prime}\right)_{n \geqslant 0}$ moves

$$
\begin{aligned}
& =\frac{1}{\lambda(0)}+E^{\mathbb{P}_{0}^{\prime}}\left[\sum_{n=1}^{H_{0}^{\prime}-1} \lambda(n)^{-1}\right] \\
& =\frac{1}{\lambda(0)}+\sum_{m=1}^{\infty} \frac{1}{\lambda(m)} \mathbb{P}_{0}^{\prime}\left[H_{0}^{\prime}>m\right] \\
& =\frac{1}{\lambda(0)}+\sum_{m=1}^{\infty} \frac{1}{\lambda(m)} p^{m-1} .
\end{aligned}
$$

(d) If we choose $\lambda(x)=p^{x}$, it is immediate from (c) that $E_{0}\left[\tilde{H}_{0}\right]=\infty$, so $\left(X_{n}^{\prime}\right)_{n \geqslant 0}$ is positive recurrent, but $E_{0}\left[\tilde{H}_{0}\right]=\infty$ (with 0 not absorbing) so 0 is not positive recurrent for $\left(X_{t}\right)_{t \geqslant 0}$.

Exercise 11.5

(a) Note that

$$
q_{i, i+1}=\frac{\lambda_{i}}{\lambda_{i}+\mu_{i}}, \quad q_{i, i-1}=\frac{\mu_{i}}{\lambda_{i}+\mu_{i}}, \quad q_{i, j}=0 \text { for all } j \notin\{i-1, i+1\}
$$

The generator matrix Λ is given by

$$
\Lambda=\left(\begin{array}{ccccc}
-\lambda_{0} & \lambda_{0} & & & \\
\mu_{1} & -\left(\lambda_{1}+\mu_{1}\right) & \lambda_{1} & & \\
& \mu_{2} & -\left(\lambda_{2}+\mu_{2}\right) & \lambda_{2} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

We have to solve $\pi^{T} \Lambda=0, \pi=\left(\pi_{i}\right)_{i \in \mathbb{N}}$, with $\pi_{0}=1$. This is equivalent to

$$
\begin{aligned}
& -\lambda_{0}+\mu_{1} \pi_{1}=0 \\
& \lambda_{i} \pi_{i}-\left(\lambda_{i+1}+\mu_{i+1}\right) \pi_{i+1}+\mu_{i+2} \pi_{i+2}=0 \text { for all } i \in \mathbb{N}
\end{aligned}
$$

Summing up over $\{0,1, \ldots, n-2\}$ yields

$$
\sum_{i=0}^{n-2} \lambda_{i} \pi_{i}+\sum_{i=0}^{n} \mu_{i} \pi_{i}=\sum_{i=0}^{n-1} \lambda_{i} \pi_{i}+\sum_{i=0}^{n-1} \mu_{i} \pi_{i}
$$

It follows

$$
\mu_{n} \pi_{n}=\lambda_{n-1} \pi_{n-1}
$$

and thus for $n \geq 1$:

$$
\pi_{n}=\frac{\lambda_{n-1}}{\mu_{n}} \pi_{n-1}=\ldots=\frac{\prod_{i=0}^{n-1} \lambda_{i}}{\prod_{i=1}^{n} \mu_{i}}
$$

A stationary distribution exists if and only if

$$
\sum_{n=1}^{\infty} \pi_{n}=\sum_{n=1}^{\infty} \frac{\prod_{i=0}^{n-1} \lambda_{i}}{\prod_{i=1}^{n} \mu_{i}}<\infty
$$

(b) For a stationary distribution $\nu=\left(\nu_{i}\right)_{i \in \mathbb{N}}$

$$
\sum_{i=0}^{\infty} \nu_{i}=1
$$

must hold. Hence, the stationary distribution ν is given by

$$
\nu_{n}=\frac{\pi_{n}}{1+\sum_{n=1}^{\infty} \frac{\prod_{i=0}^{n-1} \lambda_{i}}{\prod_{i=1}^{n} \mu_{i}}} .
$$

