Brownian Motion and Stochastic Calculus Exercise Sheet 1

Exercise 1-1

Let (Ω, \mathcal{F}, P) be a probability space and assume that $X = (X_t)_{t\geq 0}$, $Y = (Y_t)_{t\geq 0}$ are two stochastic processes on (Ω, \mathcal{F}, P) . Recall that two processes Z and Z' on (Ω, \mathcal{F}, P) are said to be versions (or modifications) of each other if $P(Z_t = Z'_t) = 1 \forall t \geq 0$, while Z and Z' are indistinguishable if $P(Z_t = Z'_t \forall t \geq 0) = 1$.

a) Assume that X and Y are both right-continuous or left-continuous. Show that the processes are versions of each other if and only if they are indistinguishable.

Remark: A stochastic process is said to have the path property \mathcal{P} (\mathcal{P} can be continuity, right-continuity, differentiability, boundedness...) if the property \mathcal{P} holds for *P*-almost every path.

b) Give an example showing that one of the implications of part a) does not hold for general X, Y.

Exercise 1-2

Let $X = (X_t)_{t \ge 0}$ be a stochastic process defined on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$. The aim of this exercise is to show the following chain of implications:

X optional \Rightarrow X progressively measurable \Rightarrow X product-measurable and adapted.

- 1. Show that every progressively measurable process is product-measurable and adapted.
- 2. Assume that X is adapted and *every* path of X is right-continuous. Show that X is progressively measurable. *Remark:* The same conclusion holds true if every path of X is left-continuous. *Hint:* For fixed $t \ge 0$, consider an approximating sequence of processes Y^n on $\Omega \times [0, t]$ given by $Y_0^n = X_0$ and $Y_u^n = \sum_{k=0}^{2^n-1} 1_{(tk2^{-n}, t(k+1)2^{-n}]}(u) X_{t(k+1)2^{-n}}$ for $u \in (0, t]$.
- 3. Recall that the optional σ -field \mathcal{O} is generated by the class $\overline{\mathcal{M}}$ of all adapted processes whose paths are all RCLL. Show that \mathcal{O} is also generated by the subclass \mathcal{M} of all *bounded* processes in $\overline{\mathcal{M}}$.
- 4. Use the monotone class theorem to show that every optional process is progressively measurable.

Exercise 1-3

Consider two random variables X and Y on a probability space (Ω, \mathcal{F}, P) . Show that X = Y a.s. if and only if

$$E[f(X)g(Y)] = E[f(X)g(X)]$$
(1)

for all bounded continuous real valued functions f and g.

Hint: You can use the monotone class theorem to show first that E[h(X,Y)] = E[h(X,X)] for all bounded measurable functions h on $\mathbb{R} \times \mathbb{R}$.

Exercise 1-4

MATLAB-Exercise The aim of this exercise is to illustrate Donsker's Theorem, i.e., we consider a *rescaled* random walk S_n and let n goes to infinity. Let (Ω, \mathcal{F}, P) be a probability space and $(Y_k)_{k\in\mathbb{N}}$ be a sequence of i.i.d random variables where each Y_k is either 1 or -1, with a 50% probability for either value. Moreover, set $S_0 = 0$ and define $S_n = \sum_{k=1}^n Y_k$ for $n \in \mathbb{N}$. For $t \in [0, 1]$ and $\omega \in \Omega$, consider the piecewise linear interpolation $X^n = (X_t^n)_{0 \le t \le 1}$ with

$$X_{t}^{n}(\omega) = \frac{1}{\sqrt{n}} S_{[nt]}(\omega) + \frac{1}{\sqrt{n}} Y_{[nt]+1}(\omega)(nt - [nt]),$$

where [x] denotes the integer part of the real number x.

For $n = 10^6$ simulate the random variables $(Y_k)_k$ and plot the resulting process $X^n(\omega)$ (you can set the time grid $dt = 10^{-4}$).

Hint: The MATLAB commands, binornd, cumsum, fix might be useful.

Exercise sheets and further information are also available on: http://www.math.ethz.ch/education/bachelor/lectures/fs2015/math/bmsc