Brownian Motion and Stochastic Calculus Exercise Sheet 10

 Consider a filtered probability space (Ω, F, (F_t)_{t≥0}, P) satisfying the usual conditions and let W be a Brownian motion with respect to P and (F_t)_{t≥0}. Moreover, let b ∈ L²_{loc}(W) and assume there is a sequence (t_n)_{n∈N0} ⊂ ℝ increasing to infinity, with t₀ = 0, such that

$$E\left[\exp\left(\frac{1}{2}\int_{t_n}^{t_{n+1}}b_s^2\,ds\right)\right] < \infty$$

for each $n \in \mathbb{N}_0$.

- a) Show that $Z := \mathcal{E}(\int b \, dW)$ is a martingale. *Hint:* Use Ex 8-2b). For that, note that it suffices to show that $n \mapsto E[Z_{t_n}]$ is constant, and prove this using induction and Novikov's criterion.
- **b**) Show that the process $M = (M_t)_{t>0}$ given by

$$M_t = \left(W_t - \int_0^t b_s \, ds\right) Z_t$$

is a martingale.

Hint: Use part a), the Girsanov transformation and Bayes' formula.

 Consider a probability space (Ω, F, P) carrying a Brownian motion W = (W_t)_{t≥0}. Denote by F = (F_t)_{t≥0} the P-augmentation of the (raw) filtration generated by W. Moreover, fix T > 0, a < b, and set F := 1_{a≤W_T≤b}. The goal of this exercise is to find explicitly the integrand H ∈ L²_{loc}(W) in the Itô representation

$$F = E[F] + \int_0^\infty H_s \, dW_s. \tag{(\star)}$$

a) Show that the martingale $M = (M_t)_{t \ge 0}$ given by $M_t := E[F|\mathcal{F}_t]$ has the representation

$$M_t = g(W_t, t), \quad 0 \le t \le T,$$

Bitte wenden!

for a Borel function $g : \mathbb{R} \times [0, T) \to \mathbb{R}$. Compute g in terms of the distribution function Φ of the standard normal distribution.

Hint: Use the Markov property of BM or the independent increment property of BM.

- **b)** Apply Itô's formula to $g(W_t, t)$. *Hint:* Since M is a martingale, you do not need to calculate all the terms in Itô's formula.
- c) From part b), deduce a candidate for H and show that it works for Itô's representation of F in (\star) .
- **3.** Let T > 0 denote a fixed time horizon and let $N = (N_t)_{t \in [0,T]}$ be a Poisson process with parameter $\lambda > 0$ on the probability space (Ω, \mathcal{F}, P) with respect to a filtration $\mathcal{F} = (\mathcal{F}_t)_{t \in [0,T]}$. Fix $\tilde{\lambda} > 0$ and set $D := e^{(\lambda \tilde{\lambda})T} \left(\frac{\tilde{\lambda}}{\lambda}\right)^{N_T}$.
 - a) Show that there exists a probability measure Q which is equivalent to P on \mathcal{F}_T such that $\frac{dQ}{dP} = D$. Moreover, find its density process $Z = (Z_t)_{t \in [0,T]}$, and show that Z satisfies $dZ_t = \frac{\tilde{\lambda} \lambda}{\lambda} Z_{t-} d\tilde{N}_t$, where $\tilde{N}_t := N_t \lambda t$, $t \in [0, T]$, denotes the compensated Poisson process. *Hint:* Use Ex 9-3.
 - **b**) Show that *P*-a.s. for all $t \in [0, T]$, we have

$$\int_0^t \frac{1}{Z_s} d[Z, \widetilde{N}]_s = \frac{\widetilde{\lambda} - \lambda}{\widetilde{\lambda}} N_t.$$

Hint: Compute $\frac{Z_{s-}}{Z_s}\Delta N_s$ for $s \in (0, t]$.

- c) Use Girsanov's Theorem to show that $N_t \tilde{\lambda}t$, $t \in [0, T]$, is a local (Q, \mathcal{F}) -martingale.
- 4. Let \mathcal{H}^1 denote the space of all RCLL martingales with finite \mathcal{H}^1 norm. Recall that $\|M\|_{\mathcal{H}^1} := \mathbb{E}[\sup_{t\geq 0} |M_t|]$. The goal of this exercise is to show that the \mathcal{H}^1 space is complete.
 - a) Let $\Omega' := \{f : [0, \infty) \times \Omega \mapsto \mathbb{R}$, such that f has RCLL sample path and on this space we define $||f||_{\mathcal{L}^1} := \mathbb{E}[||f||_{\infty}] := \mathbb{E}[\sup_{t>0} |f(t)|]$. Show that

$$\mathcal{L}^{1}(\Omega; \mathcal{D}[0, \infty)) := \{ f \in \Omega' : \|f\|_{\mathcal{L}^{1}} < \infty \}$$

is a Banach space.

Siehe nächstes Blatt!

- **b**) Use part (a) to conclude that \mathcal{H}^1 is complete.
- **5.** Matlab Exercise Let W be a one-dimensional (P, \mathcal{F}) Brownian motion on [0, 1] and let a(s) = s and f(s) = cos(s). The goal of this exercise is to compute $\mathbb{E}_P[f(W_1 + \int_0^1 a_s ds)]$ by using Girsanov's Theorem. That is, we want to numerically verify the identity

$$\mathbb{E}_P\left[f(W_1 + \int_0^1 a_s ds)\right] = \mathbb{E}_P\left[\exp\left(\int_0^1 a_s dB_s - \frac{1}{2}\int_0^1 a_s^2 ds\right)f(W_1)\right].$$
 (1)

Simulate both sides of (1) using Monte Carlo simulation and verify that it is indeed true. For your Monte-Carlo simulation take $N = 10^4$ sample paths and 10^3 grid points on [0, 1].

Hint: To approximate the stochastic integral $\int_0^1 a_s dB_s$ you can use Ex 8-4.