Brownian Motion and Stochastic Calculus Exercise Sheet 2

- 1. A continuous time stochastic process is called a *Brownian Bridge* if it is a Gaussian process with mean 0 and covariance function s(1 t), s < t. Let W be a Brownian motion and consider the process $X = (X_t)_{0 \le t \le 1}$ defined by $X_t = W_t tW_1$.
 - a) Show that X is a Brownian Bridge. *Hint:* If $(X_{t_1}, \ldots, X_{t_n})$ is the image of a linear transformation of another Gaussian vector, then $(X_{t_1}, \ldots, X_{t_n})$ is also a Gaussian vector.
 - **b**) Show that X does **not** have independent increments.

Hint: Compute the covariance of the increments.

2. Show that if $(X_n)_{n \in \mathbb{N}}$ is a Gaussian process indexed by \mathbb{N} and converges in probability to a random variable X as n goes to infinity, then it converges also in L^2 to X.

Hint:

- (1) Show that $(X_n X)_{n \in \mathbb{N}}$ is a sequence of normal random variables.
- (2) To show (1) you can use the following result: Let (X_n)_{n∈N} be a sequence of random variables with X_n ~ N(μ_n, σ_n²) for each n ∈ N. If the sequence (X_n)_{n∈N} converges in distribution to a random variable X, then the limits μ := lim_{n→∞} μ_n and σ² := lim_{n→∞} σ_n² exist and X ~ N(μ, σ²).
- **3.** Let $(S_i, S_i)_{i \in \mathbb{N}_0}$ be a sequence of measurable spaces and consider the path space $\Omega = \underset{i=0}{\times} \underset{i=0}{\infty} S_i := \{\omega = \{(x_0, x_1, \ldots) | x_i \in S_i\}$ with the canonical coordinate map $X_n(\omega) := x_n$. For each $n \ge 0$ let $\mathcal{F}_n = \sigma(X_0, \ldots, X_n)$ denote the sigma algebra of observable events up to time n, and $\mathcal{F} = \sigma(X_0, X_1, \ldots) = \sigma(\bigcup_{n=0}^{\infty} \mathcal{F}_n)$. Moreover, we assume that there exists
 - an initial distribution P_0 on S_0

Bitte wenden!

• a sequence of stochastic kernels K_n from $(\times_{i=0}^{n-1}S_i, \mathcal{F}_{n-1})$ to (S_n, \mathcal{S}_n) .

Put differently, we define by induction,

- $Q_0 = P_0$ on (S_0, \mathcal{S}_0)
- $Q_{n+1} = Q_n \times K_{n+1}$ on $(\times_{i=0}^{n+1} S_i, \mathcal{F}_{n+1})$, for $n \ge 0$.

Then, the powerful **Ionescu-Tulcea** Theorem states that there exists a unique probability measure Q on (Ω, \mathcal{F}) such that for all $n \ge 0$ we have

$$\pi_n \circ Q = Q_n,$$

where $\pi_n : \Omega \mapsto \times_{i=0}^n S_i$ with $\pi_n(\omega) = (x_0, \ldots, x_n)$ denotes the projection map onto $\times_{i=0}^n S_i$. That is, there exists a unique distribution Q on (Ω, \mathcal{F}) such that for each $n \ge 0$ it behaves like Q_n on $(\times_{i=0}^n S_i, \mathcal{F}_n)$.

Let P_n be a sequence of probability distributions on $(S_i, S_i)_{n \ge 1}$. For the special kernel $K_n((x_0, \ldots, x_{n-1}), \cdot) \equiv P_n$, the measure constructed in the Ionescu-Tulcea Theorem is called the *product measure* of the distributions P_n and is denoted by $\bigotimes_{n=0}^{\infty} P_n$. Show that P is the product measure of the marginal distributions $P_n = P \circ X_n^{-1}$ if and only if the canonical coordinate maps $(X_n)_{n=0,1,\ldots}$ are independent with respect to P.

Hint: What is $Q_{n+1} = Q_n \times K_{n+1}$ if $K_n((x_0, \ldots, x_{n-1}), \cdot) \equiv P_n$?

4. Matlab Exercise Let $W = (W_t)_{0 \le t \le 1}$ be a standard Brownian motion and $X_t = 1 + 2t + 2W_t$ denote a drifted Brownian motion. Simulate N = 10 sample paths of the processes X using the normal increment property of the Brownian motion. For this exercise you can use an equidistant time grid, i.e., $t_i = i/M$, $i = 0, \dots, M = 10^3$.

Hint:

- Recall that $(W_{t_{i+1}} W_{t_i}) \sim \mathcal{N}(0, t_{i+1} t_i)$. Therefore, first simulate independent normal random variables and obtain the sample path of W by summing it up efficiently.
- Make sure that your Brownian motion starts at 0.
- The MATLAB-commands *randn*, *cumsum* and *repmat* might be useful.