Brownian Motion and Stochastic Calculus Exercise Sheet 3

1. Let $(B_t)_{t>0}$ be a Brownian motion and consider the process X defined by

$$X_t := e^{-t} B_{e^{2t}}, \quad t \in \mathbb{R}.$$

- **a)** Show that $X_t \sim \mathcal{N}(0, 1), \quad \forall t \in \mathbb{R}.$
- **b)** Show that the process $(X_t)_{t \in \mathbb{R}}$ is time reversible, i.e. $(X_t)_{t \ge 0} \stackrel{Law}{=} (X_{-t})_{t \ge 0}$.

Hint: Use the time inversion property of Brownian motion, i.e., if W is a Brownian motion, then

$$X_t := \begin{cases} 0, & \text{if } t = 0, \\ tW_{1/t}, & \text{if } t > 0, \end{cases}$$

is also a Brownian motion.

- 2. Let $X = (X_t)_{t \ge 0}$ be a right-continuous martingale on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, P)$ and let $\mathcal{F}_{\infty} := \sigma \Big(\bigcup_{t \ge 0} \mathcal{F}_t\Big)$. Show that the following are equivalent:
 - 1) There is a random variable $Y \in \mathcal{L}^1$ with $X_t = E[Y|\mathcal{F}_t]$ for all $t \ge 0$.
 - 2) $(X_t)_{t>0}$ converges in \mathcal{L}^1 to an \mathcal{F}_{∞} -measurable random variable.
 - 3) There is an \mathcal{F}_{∞} -measurable random variable $X_{\infty} \in \mathcal{L}^1$ such that $(X_t)_{t \in [0,\infty]}$ is a martingale.
 - 4) $(X_t)_{t\geq 0}$ is uniformly integrable.

Moreover, show that if 1) – 4) hold true, then $X_{\infty} = E[Y|\mathcal{F}_{\infty}]$.

Hint:

For this exercise the supermartingale convergence theorem might be useful: If X = (X_t)_{t≥0} is a right-continuous supermartingale with sup_{t≥0} E[|X_t|] < ∞, then the limit X_∞ := lim_{t→∞} X_t exists a.s. (and X_∞ ∈ L¹)

Bitte wenden!

- For the last claim, first show that $\mathcal{D} := \{A \in \mathcal{F} | E[X_{\infty} \mathbf{1}_A] = E[Y \mathbf{1}_A]\}$ is a Dynkin-System which contains $\cup_{t \ge 0} \mathcal{F}_t$. In a second step use Dynkin System Theorem to conclude the result.
- 3. Let S = C[0,1] be the space of continuous functions x : [0,1] → ℝ with the supnorm ||x|| := sup_{0≤t≤1} |x(t)| and the corresponding metric d(x, y) := ||x y||. Then, S is a Banach space and separable, since [0,1] is compact. We consider the following sigma-algebras on S:
 - the Borel sigma-algebra $\mathcal{B}(S)$
 - the sigma-algebra $\sigma(C(S))$ generated by continuous functions $f: S \mapsto \mathbb{R}$, i.e.,

$$\sigma(C(S)) := \sigma\left(\bigcup_{f \in C(S)} \{f^{-1}(B), B \in \mathcal{B}(\mathbb{R})\}\right)$$

• the sigma algebra $\sigma(\mathcal{Z})$ generated by the system \mathcal{Z} of all *cylinder sets*

$$Z = \{ x \in S | x(t_j) \in A_j, j = 1, \dots, n \},\$$

with $n \in \mathbb{N}, 0 \leq t_1 < t_2 < \cdots < t_n \leq 1$ and $A_1, \ldots, A_n \in \mathcal{B}(\mathbb{R})$.

Show that

$$\sigma(C(S)) = \mathcal{B}(S) = \sigma(\mathcal{Z}).$$

That is, we have the following observation. The map $X : (\Omega, \mathcal{F}) \mapsto (S, \mathcal{B}(S))$ with $\omega \mapsto X_{\cdot}(\omega)$ is measurable if and only if for all $t_i \in [0, 1]$ the coordinate evaluation map $X_{t_i} : (\Omega, \mathcal{F}) \mapsto (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ with $\omega \mapsto X_{t_i}(\omega)$ is measurable. *Hint:*

- To show $\sigma(C(S)) \supseteq \mathcal{B}(S)$: let $A \subseteq S$ be closed and find a function $h \in C(S)$ such that $A = \{h = 0\}$.
- To show B(S) ⊆ σ(Z): first show that every closed ε-ball is in σ(Z) and use separability of the metric space S to conclude.
- **4.** Matlab Exercise The goal of this exercise is illustrate the Wiener-Lévy representation of Brownian motion. Therefore, for $n \in \mathbb{N}$ let $\varphi_{n,k}$ and φ_0 denote the Schauder functions, i.e.,

$$\begin{aligned} \varphi_0(t) &:= t \\ \varphi_{n,k}(t) &:= 2^{n/2} (t - (k - 1)2^{-n}) I_{J_{2k-1},n+1} - 2^{n/2} (t - k2^{-n}) I_{J_{2k,n+1}}(t), \end{aligned}$$

Siehe nächstes Blatt!

where $I_A(t)$ denotes the indicator function on A and

$$J_{k,n} = ((k-1)2^{-n}, k2^{-n}], \text{ for } k = 1, \dots, 2^n.$$

That is, the graph of $\varphi_{n,k}$ is a triangle over $J_{k,n}$ with its peak of height $2^{-n/2-1}$ at the middle point $(2k-1)2^{-(n+1)}$. Moreover, let Y_0 and $Y_{n,k}$ be i.i.d standard normal random variables and define for $N \leq \infty$

$$W_t^N := Y_0 \varphi_0(t) + \sum_{n=0}^N \sum_{k=1}^{2^n} Y_{n,k} \varphi_{n,k}(t).$$

We know from the lecture that W^{∞} is well-defined and is a Brownian motion. Simulate 10 sample paths of the process W^N with N = 12. In this exercise you can set T = 1 and use an equidistant time grid with 2000 grid points, i.e., $t_i = i/M$, $i = 0, \ldots, M = 2 \cdot 10^3$. Hint:

- First write a function *schauderfunction*(*n*,*k*,*t*) which computes the schauder functions for given *n*, *k* and *t*
- Figure out how many iid normal random variables you need and compute W^N by sequentially adding the new increments