Brownian Motion and Stochastic Calculus Exercise Sheet 4

- A function f : D ⊆ ℝ → ℝ is called locally Hölder continuous of order α at x ∈ D if there exists δ > 0 and C > 0 such that |f(x) f(y)| ≤ C|x y|^α for all y ∈ D with |x y| ≤ δ. A function f : D ⊆ ℝ → ℝ is called locally Hölder continuous of order α, if it is locally Hölder continuous of order α at each x ∈ D.
 - a) Let $Z \sim N(0, 1)$. Prove that $P[|Z| \le \varepsilon] \le \varepsilon$ for any $\varepsilon \ge 0$.
 - **b)** Prove that for any $\alpha > \frac{1}{2}$, *P*-almost all Brownian paths are nowhere on [0, 1] locally Hölder-continuous of order α . *Hint:*
 - Take any M ∈ N satisfying M(α 1/2) > 1 and show that the set {W_.(ω) is locally α-Hölder at some s ∈ [0, 1]} is contained in the set B := U_{C∈N} U_{m∈N} ∩_{n≥m} U_{k=0,...,n-M} ∩^M_{j=1} {|W_{k+j}/_n(ω) W_{k+j-1}/_n(ω)| ≤ C 1/n^α}.
 Show P[B] = 0.
 - c) The *Kolmogorov–Čentsov theorem* states that an \mathbb{R} -valued process X on [0, T] satisfying

 $E[|X_t - X_s|^{\gamma}] \le C |t - s|^{1+\beta}, \quad s, t \in [0, T],$

where $\gamma, \beta, C > 0$, has a version which is locally Hölder-continuous of order α for all $\alpha < \beta/\gamma$. Use this to deduce that Brownian motion has for every $\alpha < 1/2$ a version which is locally Hölder-continuous of order α .

Remark: One can also show that the Brownian paths are *not* locally Hölder-continuous of order 1/2. The exact modulus of continuity was found by P. Lévy.

2. Let $(W_t)_{t\geq 0}$ be a Brownian motion. For any a > 0 consider the \mathbb{H} - stopping times

$$T_a := \inf \{t > 0 \mid W_t \ge a\}, \quad \overline{T}_a := \inf \{t > 0 \mid |W_t| \ge a\},$$

where $\mathbb{H} = (\mathcal{H}_t)_{t \geq 0}$ with $\mathcal{H}_t := \bigcap_{\varepsilon > 0} \mathcal{H}^0_{t+\varepsilon} = \bigcap_{\varepsilon > 0} \sigma(W_s, s \leq t).$

Bitte wenden!

a) Show that the Laplace transform of T_a has the value

$$E\left[\exp(-\mu T_a)\right] = \exp\left(-a\sqrt{2\mu}\right), \quad \forall \mu > 0,$$

and show that $P[T_a < \infty] = 1$.

Hint: Consider the martingale $M_t^{\lambda} = \exp\left(\lambda W_t - \frac{\lambda^2}{2}t\right)$ and use the stopping theorem.

b) Show that the Laplace transform of \overline{T}_a has the value

$$E\left[\exp(-\mu\overline{T}_a)\right] = \frac{1}{\cosh(a\sqrt{2\mu})}, \quad \forall \mu > 0.$$

Hint: Consider a martingale N^{λ} similar to M^{λ} and use the same approach as in **a**).

3. Let W be a Brownian motion on $[0, \infty)$ and $S_0 > 0$, $\sigma > 0$, $\mu \in \mathbb{R}$ constants. The stochastic process $S = (S_t)_{t \geq 0}$ given by

$$S_t = S_0 \exp\left(\sigma W_t + (\mu - \sigma^2/2)t\right)$$

is called geometric Brownian motion.

(a) Prove that for $\mu \neq \sigma^2/2$, we have

$$\lim_{t\to\infty} S_t = +\infty \quad P\text{-a.s.} \quad \text{or} \quad \lim_{t\to\infty} S_t = 0 \quad P\text{-a.s.}$$

When do the respective cases arise?

- (b) Discuss the behaviour of S_t as $t \to \infty$ in the case $\mu = \sigma^2/2$.
- (c) For $\mu = 0$, show that S is a martingale, but not uniformly integrable.

Hint:

• Recall the strong law of large numbers for Brownian motion (cf. Corollary (1.2) in section 2.1 of the lecture notes): For a Brownian motion W

$$\lim_{t\to\infty}\frac{W_t}{t}=0 \quad \text{P-a.s.}$$

4. Matlab Exercise The aim of the exercise is to simulate Brownian motion by recursively refining an initial sample path (simulated on a coarse grid). Let T = 1. Use the normal increment property of Brownian motion to simulate one sample path with time grid dt = 1/10 and $t_j = j \cdot dt$ for j = 0, 1, ..., 10 (cf. Ex 2-4). Refine this path

Siehe nächstes Blatt!

by simulating the conditional values at the midpoints $(t_j + t_{j+1})/2$, j = 0, ..., 9 of all intervals (t_j, t_{j+1}) . Repeat the process until the length of each of the subintervals become $1/(10 \cdot 2^8)$. Plot the path after each round of refinement.

Hint:

- Given the values of the Brownian motion at t_j and t_{j+1} , what is the distribution of $B_{\frac{t_j+t_{j+1}}{2}}$?
- The MATLAB command *subplot* might be useful.