Brownian Motion and Stochastic Calculus Exercise Sheet 8

1. For any $M \in \mathcal{M}_{0,\text{loc}}^c$, define as usual $M_t^* := \sup_{0 \le s \le t} |M_s|$ for $t \ge 0$. Prove that for any $t \ge 0$ and C, K > 0, we have

$$P[M_t^* > C] \le \frac{4K}{C^2} + P[\langle M \rangle_t > K].$$

Hint: Find a stopping time σ_K such that the stopped process $M^{\sigma_K} \in \mathcal{H}^{2,c}_0$ and use the Tchebycheff and Doob inequalities.

Remark: Intuitively, this means that one can control the running supremum of M in terms of the quadratic variation of M.

- **2.** Let $(\Omega, \mathcal{G}, \mathcal{G}_t, P)$ satisfying the usual conditions.
 - a) Show that every continuous *bounded* local martingale is a martingale.
 - b) Let $0 < T < \infty$ be a deterministic time. Show that any nonnegative continuous local martingale $(X_t)_{t \in [0,T]}$ with $E[X_0] < \infty$ is also a supermartingale, and if

$$E[X_T] = E[X_0],$$

then $(X_t)_{t \in [0,T]}$ is a martingale.

c) Show that for a continuous local martingale $(M_t)_{t\geq 0}$ with M_0 bounded, one can find a sequence of stopping times $(S_n)_{n\in\mathbb{N}}$, *P*-a.s. tending to infinity, such that for each *n*, the stopped process $M^{S_n} := (M_{S_n \wedge t})_{t\geq 0}$ is a bounded continuous martingale.

Hint: Use the fact that if $(M_t)_{t\geq 0}$ is a right-continuous martingale and τ any stopping time, then the stopped process $M^{\tau} := (M_{\tau \wedge t})_{t\geq 0}$ is a martingale.

Bitte wenden!

- d) Show that in general a process can be a martingale without being locally square integrable, i.e., find a process M and the underlying filtered probability space (Ω, F, Q) such that X is a (F, Q) martingale but is not locally square integrable. *Hint:* Think of a process which does not have square integrable jumps.
- **3.** For $M \in \mathcal{M}^2_{0,loc}$, i.e., M is continuous local martingale starting in 0, $L^2_{loc}(M)$ is the space of all predictable processes for which there is a sequence of stopping times $\tau_n \uparrow \infty P$ a.s. and such that for each n

$$\mathbb{E}\left[\int_0^{\tau_n} H_s^2 d\langle M \rangle_s\right] < \infty.$$

a) Show that for every $p \in (0, \infty)$, there are constants $c_p, C_p > 0$ only depending on p such that for every stopping time τ , every $M \in \mathcal{M}_{0,\text{loc}}^c$ and every locally bounded, predictable process H, we have

$$c_p E\left[\left(\int_0^\tau H_s^2 d\langle M \rangle_s\right)^{\frac{p}{2}}\right] \le E\left[\sup_{t \le \tau} \left|\int_0^t H_s dM_s\right|^p\right] \le C_p E\left[\left(\int_0^\tau H_s^2 d\langle M \rangle_s\right)^{\frac{p}{2}}\right]$$

b) Let $M \in \mathcal{M}_{0,\text{loc}}^c$ and let H be a predictable process such that for each $T \ge 0$,

$$E\left[\sqrt{\int_0^T H_s^2 \, d\langle M \rangle_s}\right] < \infty.$$

Show that $H \in L^2_{loc}(M)$ and that the stochastic integral $\int H dM$ is a martingale. *Hint:* First, show the general fact that if $N = (N_t)_{t\geq 0}$ is a local martingale and Y is an integrable random variable such that $|N_t| \leq Y$ for all $t \geq 0$, then N is a uniformly integrable martingale.

- c) Deduce from b) that if for each $T \ge 0$, $E[\sup_{t\le T} |M_t|] < \infty$ and the stopped process H^T is bounded, then $\int H dM$ is a martingale. *Hint:* Use part a) first.
- 4. Matlab Exercise Let $(B_s)_{0 \le s \le 1}$ be a standard Brownian motion on [0, 1]. The aim of this exercise is to approximate¹ the process $(Y_t)_{0 \le t \le 1} = (\int_0^t B_s dB_s)_{0 \le t \le 1}$ with

$$\sum_{t_i \le t, t_i \in \Pi_n} B_{t_i} \left(B_{t_{i+1} \land t} - B_{t_i} \right),$$

$$\int_0^t H_{s-} dX_s = \lim_{n \to \infty} \sum_{t_i \le t, t_i \in \Pi_n} H_{t_i} \left(X_{t_{i+1} \land t} - X_{t_i} \right) \quad \text{in probability.}$$

Siehe nächstes Blatt!

¹Recall from the lecture that for any continuous semimartingale X, any adapted RCLL process H and any sequence of partitions $(\Pi_n)_{n \in \mathbb{N}}$ of $[0, \infty)$ with $\lim_{n \to \infty} |\Pi_n| = 0$, we have

where Π_n is a partition on [0, 1]. Here, we use an equidistant grid on [0, 1], i.e., $0 = t_0 < t_1 < t_2 \ldots < t_n = 1$ with $n = 10^3$, $h = 10^{-3}$ and $t_i = i \cdot h$. Plot one sample path of the approximation and compare it with the exact solution Y. Also compute the L_2 -norm of the error at terminal time, i.e., $\|Y_1^n - Y_1\|_{L^2}$, where Y^n denotes the approximated solution.

Hint: The exact solution can be computed by applying Itô's formula.