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1. Let M := (Mt)t≥0 be a continuous martingale of finite variation. Show that

P -a.s., ∀t ≥ 0, Mt = M0.

Hint: First, consider the case whereM has uniformly bounded variation and show that
E[M2

t ] = 0. Then, use a suitable stopping time T and consider the stopped process
MT := (Mt∧T )t≥0.

2. Let W = (Wt)t≥0 be a 1-dimensional Brownian motion.

a) Prove that for every polynomial p on R, the stochastic integral
∫
p(W )dW is well

defined. Moreover, show that
∫
p(W )dW is also a martingale.

Hint: Use Ex 7-2 a).

b) Show that the process X = (Xt)t≥0 given by Xt = e
1
2
t cosWt is a martingale.

Hint: Apply Itô’s formula.

c) Let W ′ be another Brownian motion independent of W and % be an adapted, left-
continuous process satisfying |%| ≤ 1. Prove that the process B = (Bt)t≥0 given
by

Bt =

∫ t

0

%s dWs +

∫ t

0

√
1− %2s dW ′

s

is a Brownian motion. Moreover, compute [B,W ].
Hint: Use Lévy’s characterization of Brownian motion.

3. Let N = (Nt)t≥0 be a Poisson process with parameter λ > 0 with respect to a pro-
bability measure P and a filtration F = (F t)t≥0. Recall that a Poisson process with
parameter λ > 0 w.r.t. P and F is a (real-valued) stochastic process N = (Nt)t≥0
which is adapted to F , starts at 0 (i.e. N0 = 0 P - a.s. .) and satisfies the following two
properties:

Bitte wenden!



(PP1) For 0 ≤ s < t, the increment Nt − Ns is independent (under P ) of F s and is
(under P ) Poisson-distributed with parameter λ(t− s), i.e.

P [Nt = k] =
(λ(t− s))k

k!
e−λ(t−s), k ∈ N0.

(PP2) N is a counting process with jumps of size 1, i.e. for P -almost all ω, the
function t 7→ Nt(ω) is right-continuous with left limits (RCLL), piecewise
constant and N0-valued, and increases by jumps of size 1.

Let λ̃ > 0 and define St := e(λ−λ̃)t
(
λ̃
λ

)Nt

.

a) Show that we have P− a.s. for all t > 0

∆St =
λ̃− λ
λ

St−∆Nt .

b) Show that P - a.s. for all t ≥ 0, we have

St = 1 +

∫ t

0

λ̃− λ
λ

Su− dÑu ,

where Ñt := Nt − λt, t ≥ 0, denotes the compensated Poisson process.

Hint: Write St = f(t, Nt) and apply Itô’s formula.

c) Deduce that S is a local (P,F)-martingale. Show that it is even a true (P,F)-
martingale.

Hint: Show that sup0≤t≤T |St| is integrable for each T > 0.

4. Consider a filtered probability space (Ω,F , (Ft)t≥0, P ) satisfying the usual conditions
and let σ ≤ τ be two stopping times. Moreover, let Z be a bounded, Fσ-measurable
random variable. The goal of this exercise is to compute the stochastic integral process∫
Z1]]σ,τ ]] dM for an integrator M ∈Mc

0,loc.

a) For a (uniformly integrable) right-continuous martingale X = (Xt)t≥0, show
that the process Z(Xτ −Xσ) is again a (uniformly integrable) right-continuous
martingale.
Hint:

(i) The following result might be helpful: supposeN = (Nt)0≤t≤∞ is an adapted,
right-continuous process with the property that for any stopping time τ , we
have Nτ ∈ L1(P ) and E[Nτ ] = E[N0]. Then N is a uniformly integrable
martingale. If N is only defined on [0,∞) and we have the above assumption
onNτ only for bounded or finite stopping times τ , thenN is still a martingale
but might not be UI.

Siehe nächstes Blatt!



(ii) Use (i) to show the assertion for Z = 1A for some A ∈ Fσ and extend the
result to general Z using measure theoretical induction.

b) Let M,N ∈Mc
0,loc. Show that

[Z(M τ −Mσ), N ] = Z[M τ −Mσ, N ] = Z([M,N ]τ − [M,N ]σ).

Hint: Use the fact that we have for all stopping times τ

[M τ , N ] = [M,N τ ] = [M,N ]τ

and part a).

c) Let M ∈ Mc
0,loc and set H := Z1]]σ,τ ]]. Show that the stochastic integral

∫
HdM

is well-defined and ∫
H dM = Z(M τ −Mσ).

Conclude with part a) that if M is a (uniformly integrable) martingale, then the
stochastic integral

∫
H dM is also a (uniformly integrable) martingale.

Hint:

• To show H is adapted use the fact that for two stopping times σ and % we
have that if A ∈ Fσ then A ∩ {σ < %} belong to F%
• Use part b) to compute [Z(M τ −Mσ), N ] for N ∈Mc

0,loc


