Brownian Motion and Stochastic Calculus Exercise Sheet 9

1. Let $M := (M_t)_{t>0}$ be a continuous martingale of finite variation. Show that

$$P$$
-a.s., $\forall t \geq 0, M_t = M_0.$

Hint: First, consider the case where M has uniformly bounded variation and show that $\mathbb{E}[M_t^2] = 0$. Then, use a suitable stopping time T and consider the stopped process $M^T := (M_{t \wedge T})_{t \geq 0}$.

- **2.** Let $W = (W_t)_{t \ge 0}$ be a 1-dimensional Brownian motion.
 - a) Prove that for every polynomial p on R, the stochastic integral ∫ p(W)dW is well defined. Moreover, show that ∫ p(W)dW is also a martingale. *Hint:* Use Ex 7-2 a).
 - b) Show that the process $X = (X_t)_{t \ge 0}$ given by $X_t = e^{\frac{1}{2}t} \cos W_t$ is a martingale. *Hint:* Apply Itô's formula.
 - c) Let W' be another Brownian motion independent of W and ρ be an adapted, leftcontinuous process satisfying $|\rho| \leq 1$. Prove that the process $B = (B_t)_{t \geq 0}$ given by

$$B_t = \int_0^t \varrho_s \, dW_s + \int_0^t \sqrt{1 - \varrho_s^2} \, dW'_s$$

is a Brownian motion. Moreover, compute [B, W]. *Hint:* Use Lévy's characterization of Brownian motion.

3. Let $N = (N_t)_{t \ge 0}$ be a Poisson process with parameter $\lambda > 0$ with respect to a probability measure P and a filtration $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}$. Recall that a *Poisson process with parameter* $\lambda > 0$ w.r.t. P and \mathcal{F} is a (real-valued) stochastic process $N = (N_t)_{t \ge 0}$ which is adapted to \mathcal{F} , starts at 0 (i.e. $N_0 = 0$ P- a.s. .) and satisfies the following two properties:

Bitte wenden!

(PP1) For $0 \le s < t$, the *increment* $N_t - N_s$ is independent (under P) of \mathcal{F}_s and is (under P) Poisson-distributed with parameter $\lambda(t-s)$, i.e.

$$P[N_t = k] = \frac{(\lambda(t-s))^k}{k!} e^{-\lambda(t-s)}, \quad k \in \mathbb{N}_0.$$

(PP2) N is a counting process with jumps of size 1, i.e. for P-almost all ω , the function $t \mapsto N_t(\omega)$ is right-continuous with left limits (RCLL), piecewise constant and \mathbb{N}_0 -valued, and increases by jumps of size 1.

Let
$$\widetilde{\lambda} > 0$$
 and define $S_t := e^{(\lambda - \widetilde{\lambda})t} \left(\frac{\widetilde{\lambda}}{\lambda}\right)^{N_t}$.

a) Show that we have P- a.s. for all t > 0

$$\Delta S_t = \frac{\lambda - \lambda}{\lambda} S_{t-} \Delta N_t \,.$$

b) Show that *P*- a.s. for all $t \ge 0$, we have

$$S_t = 1 + \int_0^t \frac{\widetilde{\lambda} - \lambda}{\lambda} S_{u-} \,\mathrm{d}\widetilde{N}_u \,,$$

where $\widetilde{N}_t := N_t - \lambda t$, $t \ge 0$, denotes the compensated Poisson process. *Hint:* Write $S_t = f(t, N_t)$ and apply Itô's formula.

c) Deduce that S is a local (P, \mathcal{F}) -martingale. Show that it is even a true (P, \mathcal{F}) -martingale.

Hint: Show that $\sup_{0 \le t \le T} |S_t|$ is integrable for each T > 0.

- 4. Consider a filtered probability space (Ω, F, (F_t)_{t≥0}, P) satisfying the usual conditions and let σ ≤ τ be two stopping times. Moreover, let Z be a bounded, F_σ-measurable random variable. The goal of this exercise is to compute the stochastic integral process ∫ Z1_{||σ,τ||} dM for an integrator M ∈ M^c_{0,loc}.
 - a) For a (uniformly integrable) right-continuous martingale $X = (X_t)_{t \ge 0}$, show that the process $Z(X^{\tau} X^{\sigma})$ is again a (uniformly integrable) right-continuous martingale. *Hint:*
 - (i) The following result might be helpful: suppose N = (N_t)_{0≤t≤∞} is an adapted, right-continuous process with the property that for any stopping time τ, we have N_τ ∈ L¹(P) and E[N_τ] = E[N₀]. Then N is a uniformly integrable martingale. If N is only defined on [0, ∞) and we have the above assumption on N_τ only for bounded or finite stopping times τ, then N is still a martingale but might not be UI.

Siehe nächstes Blatt!

- (ii) Use (i) to show the assertion for $Z = 1_A$ for some $A \in \mathcal{F}_{\sigma}$ and extend the result to general Z using measure theoretical induction.
- **b)** Let $M, N \in \mathcal{M}_{0,\text{loc}}^c$. Show that

$$[Z(M^{\tau} - M^{\sigma}), N] = Z[M^{\tau} - M^{\sigma}, N] = Z([M, N]^{\tau} - [M, N]^{\sigma}).$$

Hint: Use the fact that we have for all stopping times τ

$$[M^{\tau}, N] = [M, N^{\tau}] = [M, N]^{\tau}$$

and part a).

c) Let $M \in \mathcal{M}_{0,\text{loc}}^c$ and set $H := Z1_{]\sigma,\tau]}$. Show that the stochastic integral $\int H dM$ is well-defined and

$$\int H \, dM = Z(M^{\tau} - M^{\sigma}).$$

Conclude with part a) that if M is a (uniformly integrable) martingale, then the stochastic integral $\int H dM$ is also a (uniformly integrable) martingale.

Hint:

- To show H is adapted use the fact that for two stopping times σ and ρ we have that if A ∈ F_σ then A ∩ {σ < ρ} belong to F_ρ
- Use part b) to compute $[Z(M^{\tau} M^{\sigma}), N]$ for $N \in \mathcal{M}_{0, \text{loc}}^{c}$