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1. a) We just show that the fact thatX is a version of Y implies the indistinguishability,
since the converse is obvious. Without loss of generality, we assume that X and
Y are right-continuous.

For t ≥ 0, we define the null set Nt := {ω : Xt(ω) 6= Yt(ω)}. We consider
N := ∪t∈Q+Nt, which remains a null set as a countable union of null sets. Finally,
we introduce the null set AZ := {ω : Z·(ω) not right-continuous} for Z = X, Y
and we define M := AX ∪ AY ∪N , which is still a null set.

It suffices to check that, for all ω ∈ M c, Xt(ω) = Yt(ω) ∀ t ≥ 0. By defi-
nition of M we clearly have that, for ω ∈ M c, Xt(ω) = Yt(ω) ∀ t ∈ Q+.
Now, take any t ≥ 0 and let (tn) be a sequence in Q+ with tn ↓ t. The right-
continuity of the pathsX·(ω) and Y·(ω) then impliesXt(ω) = limn→∞Xtn(ω) =
limn→∞ Ytn(ω) = Yt(ω).

b) Take Ω = [0,∞), F = B([0,∞)) the Borel σ-algebra, and P a probability
measure with P ({ω}) = 0 ∀ ω ∈ Ω (for instance, the exponential distribution).

Set X ≡ 0 and Yt(ω) =

{
1, t = ω,

0, else.

Then, P [Xt = Yt] = 1 ∀ t ≥ 0, since single points have no mass, but {Xt =
Yt ∀ t ≥ 0} = ∅. Note that all sample paths ofX are continuous, while all sample
paths of Y are discontinuous at t = ω.

2. a) Let X be progressively measurable. Then X|Ω×[0,t] is Ft⊗B[0, t]-measurable for
every t ≥ 0. For any t ≥ 0, we see that Xt = X ◦ it, where it : (Ω,Ft)→ (Ω×
[0, t],Ft⊗B[0, t]), ω 7→ (ω, t) is measurable. Therefore, Xt is Ft-measurable for
every t ≥ 0. Moreover, the processes Xn defined by Xn

u := X|Ω×[0,n]1[0,n](u),
u ≥ 0, are F ⊗ B[0,∞)-measurable. Since Xn → X pointwise (in (t, ω)) as
n→∞, also X is F ⊗ B[0,∞)-measurable.

b) Fix a t ≥ 0 and consider the sequence of processes Y n on Ω × [0, t] given by
Y n

0 = X0 and Y n
u =

∑2n−1
k=1 1(tk2−n,t(k+1)2−n](u)Xt(k+1)2−n for u ∈ (0, t]. By
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construction, each Y n isFt⊗B[0, t]-measurable. Since Y n → X|Ω×[0,t] pointwise
as n→∞ due to right-continuity, the result follows.

c) Let X be adapted, with all paths being RCLL. Consider the processes Xn :=
(X∧n)∨(−n). Clearly, eachXn is bounded and RCLL. Thus, eachXn is σ(M)-
measurable. As the pointwise limit of the Xn, also X is σ(M)-measurable. It
follows that O ⊂ σ(M). The reverse inclusion is trivial.

d) If a process X is optional, then Xn := X 1{|X|≤n} is also optional and of course
Xn → X; so if each Xn is progressively measurable, then so is X , and hence we
can assume without loss of generality that X is bounded.
LetH denote the real vector space of bounded, progressively measurable proces-
ses. By part b),H containsM. Clearly,H contains the constant process 1 and is
closed under monotone bounded convergence. Also,M is closed under multipli-
cation. The monotone class theorem yields that every bounded σ(M)-measurable
process is contained in H. Due to c), we conclude that every bounded optional
process is progressively measurable.

3. We only show the ’if’ part of the claim, since the other part is trivial. Let H be the
set of all bounded measurable functions h(x, y) on R × R such that E[h(X,X)] =
E[h(X, Y )]. Then, H contains the constant 1 function and is a vector space closed
under bounded monotone convergence. Let D be the set (closed under multiplication)
of all functions of the form (x, y) 7→ f(x)g(y), where f and g are bounded continuous
function of R. Moreover, Formula (1) shows that D ⊂ H and we know that σ(D) =
B(R2). The monotone class theorem implies that all bounded measurable functions
on R2 are in H. Now take the indicator of the diagonal: h(x, y) = 1 if x = y and 0
otherwise, yielding that X = Y a.s.

4. Matlab Files

1 f u n c t i o n bmscex14
2 c l e a r a l l ;
3 % EX 1−4
4 % I l l u s t r a t i o n o f Donsker ’ s Theorem .
5
6 % number o f i n c r e m e n t s
7 n =10^6;
8
9 % s i m u l a t e n b e r n o u l l i v a r i a b l e s

10 p = 1 / 2 ;
11 b e r = b i n o r n d ( 1 , p , n , 1 ) ;
12
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13 % l i n e a r t r a n s f o r m a t i o n which makes [1,0]−−> [1 ,−1]
14 y= 2∗ ber −1;
15
16 % sum S w i t h S_0=0
17 sumprocess = [ 0 ; cumsum ( y ) ] ;
18
19 %t i m e s t e p f o r t h e p l o t
20 d t =10^(−4) ;
21 %t i m e g r i d
22 t i m e g r i d = 0 : d t : 1 ;
23 t = t i m e g r i d ( 1 : ( end−1) ) ;
24
25 % use t h e l i n e a r i n t e r p o l a t i o n f o r m u l a g i v e n i n t h e

e x e r c i s e
26 % i n d i c e s are s h i f t e d by 1 , s i n c e we s t a r t w i t h a t t i m e

0
27 x =1/ s q r t ( n ) ∗ sumprocess ( f i x ( n∗ t ) +1) +1/ s q r t ( n ) ∗y ( f i x ( n∗ t )

+1) . ∗ ( n∗ t−f i x ( n∗ t ) ) ’ ;
28
29 %add t e r m i n a l v a l u e x_1 =1/ s q r t ( n ) ∗S_n
30 x= [ x ; 1 / s q r t ( n ) ∗ sumprocess ( f i x ( n ) +1) ] ;
31
32 %p l o t o p t i o n s
33 p l o t ( t i m e g r i d , x , ’ r−’ )
34 t i t l e ( ’Ex 1−4: Donskers Theorem ’ )
35 x l a b e l ( ’ t ime ’ ) ;
36 y l a b e l ( ’ r e s c a l e d random walk ’ ) ;
37 l egend ( s t r c a t ( ’ number o f i n c r e m e n t s = ’ , num2str ( n ) ) ) ;
38 end
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Ex 1−4: Donskers Theorem
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number of increments=1000000

Abbildung 1: Illustration of Donsker’s Theorem


