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1. a) Being a nonnegative local martingale with Z, = 1, Z := &([bdW) is a su-
permartingale and hence has a nonincreasing mean function. To show that it is a
martingale, it thus suffices to show that E[Z; | = E[Z,,] = 1foralln. Fixn > 1
and set b" := bly;,_, 1,1- Then

sG] )] - ))<=

Therefore, Novikov’s criterion yields that £( [ " dWW) is a (uniformly integrable)
martingale. Finally, noting that Z,, = Z;, ,E([ b*dW ), and E([ b"dW),, , =
1, we obtain

E[Z,]|=E [Ztn_lE {5 ( / b dW)t

b) Fix T' > 0 and (Z7); := Z;r the stopped process. With L := [ bdW, we have
ZT = E(L"). Since Z7 is a uniformly integrable martingale, Girsanov’s theorem
yields that

Ftn_l” = EZ,,_,].

n

W— (LY W)y=W — </b1]]0,T}] dw, W> =W - /bluo,ﬂ] dt

is a martingale (even a Brownian motion) under the measure Q7 given by dQ7 =
ZTdP. By Bayes’ formula (cf. Proposition 4.(4.4) part 2), it follows that

(W — /bl]]ojﬂ dt) zTr

is a P-martingale. Hence also M” = (W™ — [ bljorydt) Z” is a P-martingale.
Since T was arbitrary, M is a P-martingale.

2. a) By the Markov property of Brownian motion, we have forany 0 <t < T,

Mt = E[l{(LSWTSb}“Ft] - KT7t<Wt7 [G, b])

Bitte wenden!



b)

c)

where K is the Gaussian transition kernel. Define g : R x [0,7') — R by
g(x,t) = Kr_¢(z, [a,b]).

Then, denoting the standard normal distribution function by ®, we have

e (%) _p (T;_t)

In particular, g is C*!' on R x (0, 7).

Alternative computation. Noting that IV, is F;-measurable and W — W, ~
N(0,T — t) is independent of F;, we can compute

M, = E[F|F] = Pla < Wy < b|F] = Pla — W, < Wy — W; < b— W;|F]
b—Wt G—Wt)
—o (22} o (L) = g, ).
(27 )~ o (“22h) = atmin

Since M; = g(W,, t) is a martingale, the sum of all finite variation terms in Itd’s
formula applied to g(WW;, t) vanishes and we obtain for ¢ € (0,7") that

tag
M, — My = —= (W, s) dW,
t 0 /0 83:( s)

A=) () e o

where ¢ = @’ denotes the standard normal density.

Since z¢(z) — 0as x — £o0, it is easy to see that the integrand in (1) converges
P-a.s.to0as s T 7T. Hence,

e () (2]

is a continuous, adapted process. Thus, H € L2 (W) and (1) yields for 0 < ¢ <
T that

t
M, = M, +/ H, dWs. (2)
0

Since both sides in (2) are local martingales on [0, c0) and hence continuous, we
canlett 1 7T to get
T
Mr = M, —|—/ H,dW,.
0
To conclude, it suffices to note that My = F, My = E[F], and fOT H, dW, =

fooo H dWy since H is zero on [T, co]. Moreover, f H dW is a martingale as M
is one.
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3.

a)

b)

c)

We know from Ex 9-3 that the process Y := (Y});c[o,7] defined by

A\
Y, := XM <X> 3)

is a true (P, F)-martingale which satisfies Ep[Y;] = Yy = 1 forall 0 < ¢ < T.
Moreover, Y is clearly strictly positive. Hence D = Y7 is a strictly positive
Fr-measurable random variable, which satisfies Ep[D] = 1. Therefore, we can
define a probability measure () on F by d@) = D dP, which is equivalent to P.
Moreover, its density process Z is given by

Z, .= Ep|D|F] =Ep[Ys| Fi] = Y:, Pa.s. @)
for all t € [0, T]. Therefore, in addition, we have shown in EX 9-3 b)
P W
dz, = Z;— dNy. &)
Using that for P-almost all w, we have AN, € {0, 1} for all s € (0,77, we have
P.a.s. forall s € (0,7
Z,- A\ A A
Zs A A

Recalling that we have P.a.s. forall ¢t € [0, T]
[Ne= D AN =) AN, =N, ™)
0<s<t 0<s<t

using the properties of the quadratic variation and (5), we get P.a.s. for all ¢ €
[0, 7]

t - tAAy XN—\NZ.
— dlZ. Nl. = A N], = —_ AN,
AZf[’hlA z, N Z, o

0<s<t
X— A\ -
- AAZAN, =22 § AN, =
Y ()
0<s<t 0<s<t

By Girsanov’s theorem and part b) it follows that

t

~ 1 ~ ~

Nt_/ —d[Z7N]S:Nt—)\ >\Nt Nt—)\t—Nt—f‘iNt
0 Zs A A

:%M—%%teMﬂ, ©)

is a local (@, F)-martingale. Since % # 0 is a constant and since local martin-

gales form a vector space, it follows that N; — Xt, t € 10,77, is alocal (Q,F)-
martingale, too.

Bitte wenden!



4.

S.

a)

b)

Since the £! norm is a composition of two norms it is again a norm. To show
completeness, it suffices to check that for any sequence

(fa)n € LY D([0,00))

such that Y. | || fxl|z1 < oo the limit lim,, o Y, fx exists. With the triangle
inequality we have

1D W fillsollziry < D M fillsollzrgmy < D 1f5ller
j=1 j=1 j=1

Therefore, by monotone convergence theorem we have that

1 W fillcllzry < o0
j=1

In particular, we have » 77 || fjllc < oo P-.a.s. Consequently, for w € Q and

t > 0 the function
)= fi(w1)
j=1

exists a.s. and the series converges a.s. uniformly in t. In particular, f has RCLL
trajectory. Finally, since

I/ (w ng Moo < D 5@l < lef; Mo € LY(P).
j>n+1
The claim now follows from dominated convergence.

Now, let (M™),en € H' be a Cauchy sequence. By construction, (M"),eny C
LY, D([0,00))). Therefore, by part (a) there exists a M € L}(Q2,D(]0, 00)))
such that || M™ — M]||;1 — 0 as n — oo. It remains to check that M is a martin-
gale. Note that for all ¢ > 0

M () = M(0)]| 2 py < [MT(E) = M(E)][ 22 — 0. (10)

Hence, M is a martingale by Ex 3-2.

Matlab Files

1 function [expleft ,expright]=bmscl04anew

2% In this exercise we simulated the expectation of $cos(

\int_O™ s ds +
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3% B_1) where B is a P-BM by using Girsanov’s Theorem,
that is we check it

4% is equal to E[exp(\int_O™] s dB_s —1/2 \int_0O"l a_s"2
ds) cos (B_1)].

5 tic

6 %% parameter input

7% horizon

8 T=1;

9% sample size

10 Nplot=10"4;

11 % grid points

12M=10"3;

13% time step

14 dt= T/M;

15

16 9% Simulation

17 % BM

18 PBM = [zeros(1,Nplot);sqrt(T/M)*xcumsum(randn (M, Nplot)) |;

19

20 % approximation of the integral \int_O"l s dB_s (cf. EX
8—4)

21 agrid = repmat((0:dt:T) " ,1,Nplot);

22 Int = [zeros(1,Nplot);cumsum(agrid (1:(end—1),:).x(PBM(2:
end,:)-PBM(1:(end—1) ,:)))];

23 % weights= exp(int_0O"l s d B_s—1/2 \int_0"] s"2 ds

24 weights = (exp(Int(end,:) —1/6));

25

26 % LHS of (1)

27 expleft= mean(cos (PBM(end ,:) +1/2));

28 % RHS of (1)

29 expright= mean(weights.x cos(PBM(end,:)));

30

31 toc



