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1. a) We need to show that for any n ≥ 1 and any 0 ≤ t1 ≤ t2... ≤ tn ≤ 1
the random vector (Xt1 , ..., Xtn) is a Gaussian vector. Fix any n ≥ 1 and any
0 ≤ t1 ≤ t2... ≤ tn ≤ 1. It suffices to show that (Xt1 , ..., Xtn) is the image
of a linear transformation of another Gaussian vector. From Proposition 1.4 in
the lecture notes, we know that Brownian motion W is a Gaussian process. We
distinguish between two cases:
case 1: tn < 1
In this case, the vector (Xt1 , ..., Xtn) is the image of the Gaussian vector (Wt1 , ...,Wtn ,W1)
under the linear map

A: Rn+1 → Rn defined by A := (aij), aij =


1, i = j ∈ {1, ..., n},
−ti, j = n+ 1, i ∈ {1, ..., n}
0 else.

case 2: tn = 1
In that case, the vector (Xt1 , ..., Xtn) is the image of the Gaussian vector (Wt1 , ...,Wtn−1 ,W1)

under the linear map B: Rn → Rn defined by bij =


1, i = j ∈ {1, ..., n− 1},
−ti, j = n, i ∈ {1, ..., n− 1}
0 else.

In both cases, (Xt1 , ..., Xtn) is the image of a linear transformation of a Gaussian
vector, hence we are done.
For any t ∈ [0, 1] we have

E[Xt] = E[Wt − tW1] = 0.

For any 0 ≤ s, t ≤ 1, using that Cov(Wt,Ws) = t∧ s (see Proposition 1.1.4), we
have

Cov(Xt, Xs) = Cov(Wt − tW1,Ws − sW1)

= Cov(Wt,Ws)− sCov(Wt,W1)− tCov(W1,Ws) + tsCov(W1,W1)

= t ∧ s− ts.

Bitte wenden!



b) Take any t ∈ (0, 1). We show that the incrementX1−Xt,Xt−X0 are correlated.
In the same way as above we obtain that

Cov(X1 −Xt, Xt −X0) = Cov(−Wt + tW1, Wt − tW1) = t(t− 1) 6= 0.

2. Let (Xn)n∈N be a sequence of random variables withXn ∼ N (µn, σ
2
n) for each n ∈ N.

Since (Xn)n∈N converges in probability to X , (Xn −X)n∈N converges in probability
to 0 and hence (Xn −X)n∈N converges in distribution to 0.
Fix any n ∈ N. The sequence (Xn −Xk)k∈N converges in probability to Xn −X and
hence (Xn −Xk)k∈N converges in distribution to Xn −X . Now, since by assumption
(Xn)n∈N is a Gaussian process, we get that for each k, Xn−Xk is normal distributed.
Thus, we deduce from the hint that Xn − X is normal distributed. Since n ∈ N
was arbitrarily chosen, we get that (Xn − X)n∈N is a sequence of Gaussian random
variables. Moreover, since (Xn − X)n∈N converges in distribution to 0, we deduce
again from the hint that

E[Xn −X] −→ 0 and Var(Xn −X) −→ 0 as n→∞.

As a consequence, we get directly the L2 convergence of Xn to X , since

‖Xn −X‖2L2 = E
[
|Xn −X|2

]
=
(
E[Xn −X]

)2
+ Var

(
Xn −X

)
.

3. Let P̃ =
⊗∞

n=0 Pn. By definition, (Xn)n≥0 is independent with respect to P if and
only if for all n ∈ N0, A0 ∈ S0, . . . , An ∈ Sn we have

P [X0 ∈ A0, . . . , Xn ∈ An] = Πn
i=0P [Xi ∈ Ai] = Πn

i=0Pi[Ai].

On the other hand, the defining properties of Ionescu-Tulcea Theorem states that for
every n

P̃ [X0 ∈ A0, . . . , Xn ∈ An] = Πn
i=0Pi[Ai].

Therefore, (Xn)n≥0 is independent with respect to P if and only if P = P̃ .

4. Matlab Files

1 f u n c t i o n bmsc24
2 % In t h i s e x e r c i s e we s i m u l a t e 10 smaple p a t h s o f a

d r i f t e d BM X= 1+2 t +2W_t
3 t i c
4 %% parame te r i n p u t
5 % h o r i z o n

Siehe nächstes Blatt!
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Abbildung 1: 10 sample paths of a standard BM

6 T=1;
7 % sample s i z e
8 Nplo t =10;
9 % g r i d p o i n t s

10 M=10^3;
11 % v o l a t i l i t y and d r i f t c o e f f
12 s igma =2;
13 d r i f t c o e f f =2 ;
14
15 % S i m u l a t e BM w i t h normal i n c r e m e n t s
16 BM = [ z e r o s ( 1 , Np lo t ) ; s q r t ( T /M) ∗cumsum ( randn (M, Nplo t ) ) ] ;
17 % t h e p r o c e s s X
18 t i m e g r i d = 0 : T /M: T ;
19 d r i f t = repmat ( t i m e g r i d ’ , 1 , Np lo t ) ;
20 X=1+ d r i f t c o e f f ∗ d r i f t +sigma ∗BM;
21
22 %p l o t t h e sample p a t h s
23 p l o t ( t i m e g r i d ,X)
24 t i t l e ( ’ s i m u l a t e d BM’ ) ;
25 x l a b e l ( ’ t ime ’ ) ;
26 y l a b e l ( ’ v a l u e ’ ) ;
27 t o c


