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1. a) Fix any t ∈ R. Since Brownian motion B is a Gaussian process, we get by defi-
nition that Xt is Gaussian distributed. It remains to check its mean and variance:

E[Xt] = 0,

Var(Xt) = e−2te2t = 1.

b) Fix any n ∈ N and any t1, t2, ..., tn ≥ 0. It is enough to check that(
X−t1 , X−t2 , ..., X−tn

) Law
=
(
Xt1 , Xt2 , ..., Xtn

)
.

From the invariance by time inversion property of Brownian motion (cf. Propo-
sition 1.1 in Section 2.1)), we get that for any t̃1, ..., t̃n ≥ 0(

t̃1B1/t̃1 , t̃2B1/t̃2 , ..., t̃nB1/t̃n

) Law
=
(
Bt̃1 , Bt̃2 , ..., Bt̃n

)
.

Therefore, for t̃i := e−2ti , i := 1, ..., n, we get that(
X−t1 , X−t2 , ..., X−tn

)
=
(
et1Be−2t1 , e

t2Be−2t2 , ..., e
tnBe−2tn

)
Law
=
(
e−t1Be2t1 , e

−t2Be2t2 , ..., e
−tnBe2tn

)
=
(
Xt1 , Xt2 , ..., Xtn

)
.

2. 1)⇒ 4) This follows directly from the uniform integrability of the family
{
E[Y |G]

∣∣G ⊆
F
}
.

4)⇒ 2) As (Xt)t≥0 is uniformly integrable, it is bounded in L1, i.e. supt≥0E[|Xt|] <
∞. Applying the supermartingale convergence theorem, we obtain that X∞ :=
limt→∞Xt exists a.s., and X∞ ∈ L1 by Fatou’s lemma. By definition, as (Xt)t≥0
is adapted, X∞ is F∞-measurable. Moreover, by the uniform integrability of
(Xt)t≥0, it converges also in L1 to X∞.
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2)⇒ 3) From Xt → X∞ in L1, we conclude that also for any t ≥ 0 and A ∈ Ft we
have

Xt 1A → X∞ 1A in L1 for t→∞.

Therefore, as (Xt)t≥0 is a martingale, we have for any t ≥ 0 and A ∈ Ft that

E[X∞ 1A] = lim
s→∞

E[Xt+s 1A] = lim
s→∞

E[Xt 1A] = E[Xt 1A],

which implies that E[X∞|Ft] = Xt, and hence (Xt)t∈[0,∞] is a martingale.

3)⇒ 1) This is clear for Y := X∞.

Finally, if 1)–4) hold true, then we have like in the proof of 2)⇒ 3) that for any t ≥ 0
and A ∈ Ft,

E[X∞ 1A] = E[Xt 1A] = E[Y 1A], (1)

as Xt = E[Y |Ft]. Therefore, (1) holds true for A ∈
⋃
t≥0Ft. The collection of sets

D :=
{
A ∈ F

∣∣∣E[X∞ 1A] = E[Y 1A]
}

is a Dynkin system and contains
⋃
t≥0Ft, which is closed under finite intersections.

By the Dynkin system theorem, we conclude that D contains F∞ and thus X∞ =
E[Y |F∞].

3. We begin with the first equality: σ(C(S)) = B(S). If h is continuous, then {h > c}
is open for all c ∈ R, therefore h is B(S) measurable and we have ⊆. Conversely,
let A ⊆ S be closed, then h(s) := min(1, d(s, A)) is in C(S) and A = {h = 0},
therefore A ∈ σ(C(S)) and we have ⊇.
For the second claim notice that for every t ∈ [0, 1] the map x 7→ x(t) is a continuous
map from S to R. Therefore, σ(Z) ⊆ σ(C(S)) = B(S).
Conversely, since the metric space S is separable, every open set in S can be written
as a countable union of balls and because

Uδ(x) =
⋃
n∈N

Uδ−1/n(x), with Uε(x) := {y ∈ S|d(y, x) < ε},

it suffices to show that every closed ε- ball is in σ(Z). Indeed,

Uε(x) := {y ∈ S|d(y, x) ≤ ε}

=
⋂
n∈N

{y ∈ S|y(i/n)− x(i/n)| ≤ ε, i = 0, 1, . . . , n} ∈ σ(Z).

Therefore, B(S) ⊆ σ(Z). Finally, if X is measurable, then for every ti ∈ [0, 1] we
have Xti = Fti ◦ X with Fti : (S,B(S)) 7→ (R,B(R)) with f 7→ f(ti). We see that
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Xti is measurable, because X is measurable and Fti is continuous. Conversely, if all
Xti are measurable then for Z ∈ Z we have

X−1(Z) = {ω ∈ Ω|Xti(ω) ∈ Ai, i = 1, . . . , n}

=
n⋂
i=1

X−1ti (Ai) ∈ F .

Hence, X is measurable.

4. Matlab Files

1 f u n c t i o n bmscex34
2 % In t h i s e x e r c i s e we s i m u l a t e Brownian mot ion u s i n g t h e

Wiener−Levy
3 % R e p r e s e n t a t i o n ( s e e C o r o l l a r y I . ( 5 . 1 6 ) i n t h e l e c t u r e

n o t e s )
4
5 % upper bound on n
6 nmax =12;
7 % number o f i i d normal v a r i a b l e s
8 N=sum ( 2 . ^ [ 1 : nmax ] ) ;
9 % number o f sample p a t h s

10 M=10;
11 % f i n a l t i m e
12 T=1;
13 % number o f g r i d p o i n t s
14 g r i d p o i =2000;
15 % t i m e g r i d
16 gr id =0:T / g r i d p o i : T ;
17 % i i d s t d normal random v a r i a b l e s
18 Y=randn (N,M) ;
19 % o u t p u t m a t r i x (N ,M) =(N∗1) ∗ (1∗M) mat r i x , i n i t i a l i z e f o r

n=0: Y_0∗ ph i_0 ( t )
20 o u t =grid ’∗ randn ( 1 ,M) ;
21
22 % use t h e d e f i n i t i o n o f W^N
23 f o r n =1: nmax
24 f o r k = 1 : ( 2 ^ n )
25 % f o r m u l a I . ( 5 . 8 )
26 o u t = o u t +( s c h a u d e r b a ( n , k , gr id ) ) ’∗Y( 2 ^ ( n−1)+k , : ) ;
27 end
28 end
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Abbildung 1: 10 sample paths of a BM

29 p l o t ( grid , o u t )
30 t i t l e ( ’BM wi th Wiener−Levy r e p r e s e n t a t i o n ’ ) ;
31 x l a b e l ( ’ t ime ’ ) ;
32 y l a b e l ( ’ v a l u e ’ ) ;
33 end
34
35
36 f u n c t i o n [ v a l u e ]= s c h a u d e r b a ( n , k , t )
37 % t h e f u n c t i o n i m p l e m e n t s t h e s c h a u d e r b a s i s f u n c t i o n s e e

d e f i n i t i o n I ( 5 . 7 )
38 i nd1 = t > (2∗ k−2)∗2^(−( n +1) ) ;
39 i nd2 = t <= (2∗ k−1)∗2^(−( n +1) ) ;
40
41 i nd3=1− i nd2 ;
42 i nd4 = t <=2∗k∗2^(−( n +1) ) ;
43
44 % D e f i n i t i o n o f t h e Schauder b a s i s f u n c t i o n d e f i n i t i o n I

( 5 . 7 )
45 v a l u e =( ind1 . ∗ i nd2 ) . ∗ 2 ^ ( n / 2 ) . ∗ ( t −(k−1)∗2^(−n ) ) . . .
46 −( i nd3 . ∗ i nd4 ) . ∗ 2 ^ ( n / 2 ) . ∗ ( t−k∗2^(−n ) ) ;
47 end


