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1. a) The density f(z) = —— e~*"/2 of Z is bounded by

1
Vor e = 350
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Remark: More generally P[Z € A] < A(A), where ) is the Lebesgue measure.

b) Take any o > % and let M € N satisfying M (a — 3) > 1. If W (w) is locally
Holder—contlnuous of order « at the point s € [0, 1], there exists a constant C}, so
that |W;(w) — Wi(w)| < Cylt — s|* for ¢ near s. Then |Wi (w) — Wi (w)] <

const - n~“ for all large enough n, for % near s and M successive indices k. The
set {W (w) is locally a-Holder at some s € [0, 1]} is therefore contained in
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CeNmeNn>m k=0,....n—M j=1

We show that this is a nullset. As the above Brownian increments are iid ~
N(0,2), we have, with Z ~ N(0,1), as P[|Z| < ¢] < ¢ forany ¢ > 0 (see

a)), that
P [ﬂ {imesto - wepei<e b = (Pl 55 )
< CMp~—Mle—3), (1
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Now, we have
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n>m k=0,...n—M j=1

1
g U ﬂ{|Wk+J — Wi (w)] SC'E} foreachn > m
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c)

a)

and therefore, due to (1), as M («a — %) > 1, we get

A

k=0,....n—M j=1

P[Dm} < limsup P

n—o0

Wi () = Wi ()] < O—
{ 1

/n/Oé

< limsupn CM p=M(a=3)
n—oo

= 0.
Therefore, being a countable union of nullsets, B has P[B] = 0.
Let Y, ~ N(0,0?) for any o > 0. We note that E[Y"] = C,,0™, where C,,, =

E[Y;"]. Thus
E[|W, = W*"] = Cop|t — s|* forall n.

Writing v,, := 2n and (3, :== n — 1 yields that
E[|W, — W["] = Co,|t — s|'*P" for all n.

Now, fix a < 3. As % < & forany n € N and f—n converges to 3, we find big
enough N such that o < % Thus, we get the result applying the Kolmogorov—

Centsov theorem.

We know from Proposition (3.4) in section 2.3 of the lecture notes that for any
A € R, the process M* := (M}");>¢ defined by

2

M} = exp (z\l/Vt - %t)

is a continuous (P, H)-martingale. Moreover, for any n € N, T, An is a bounded
stopping time. Thus, applying the stopping theorem (see Theorem 3.8 in section
2.3) we get

E[M%am} — E[Mo*] ~ 1.

Now, by the law of iterated logarithm for Brownian motion (Theorem (1.3) in
section 2.1), we obtain directly that P[T, < oo] = 1, which proves the first part.
Moreover, on the event {7, < oo} we have

A n—00 2 \a 22
exp | AWr, an— ?(Ta/\n) — exp | A\W7p, — ?Ta = M exp _?Ta .

We conclude that for any A > 0

2 2
exp (/\WTa/\n — %(Ta A n)) 2% A exp ( — %Ta) P-as. 2)

Siehe nachstes Blatt!
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Observe that for any n € N we have
/\2 Aa
0 <exp | A\Wpan — ) (T.An) | <e

Thus, we deduce from (2), by applying the dominated convergence theorem, that
forany A > 0

n—,oo )\2
1=E[M} ] =5 M E [exp ( — ?Taﬂ

/\2
eME{exp(—?Ta)] =1. 3)

Fix any ¢ > 0. For A := /2, (3) yields the desired result.

and so, forany A > 0

For any A\ > 0, consider the martingale (N;');>( defined by
_ M4 M
==

The procedure in a) (using now N* instead of M* and T, instead of T},), using
the inequality 0 < N7 ,,, < cosh()a), yields

= cosh (AW;) exp (— %Qt> = cosh (A|W;]) exp <— )\—215)

N
¢ 2

P
cosh(Aa) E {exp ( - ?TQ)} =1 “)

Fix any p > 0. For A := y/2u, (4) yields the desired result.

From the definition of S;, we get § log 2t = o %* 4 1 — ;0. The strong law of
large numbers then gives, P-a.s.,

lim log — =
t—o00 0

Sy +oo if p— 30 >0,
—00 ifu—%02<0,

and therefore, P-a.s.,

t—o00

if 4t —202>0
fm 5, {700 00?0
0 if p — 0% < 0.

Ifu= %02, then S, = Sye®"Vt. From the law of the iterated logarithm we have

%%
lim sup = +1 P-as., litm inf L

Wi
t—oo  V/2tloglogt —oo  4/2tloglogt

As a consequence, P-almost every path W.(w) oscillates between +oo and —oo
for t — oo. Therefore, S; oscillates between 0 and +oo for ¢ — oo.

= —1 P-a.s.

Bitte wenden!



¢) For ;o = 0, it is known that S’ is a martingale. Moreover, by part a), we have that

t—o00

Sy — 0 P-a.s.

As a martingale with S, > 0, S cannot converge to 0 in L'. Thus, S is not
uniformly integrable.

4. Matlab Files

1 function bmscex44

2% In this exercise we simulate BM via path refinement

3% T= final time

4T = 1;

5% number of refinements

6 % (you might understand the code better if you set L=1I,
i.e., only one refinement step)

7L= 8;

8 %NO=number of grid points on the first level

9 NO =10;

10 9N= number of grid points on the final level

11 N = NOx2/L;

12 % Brownian motion at each refinement step (initalize)

13 EMX = zeros(L+1, N+1);

14 % timestep

15 h= T/N;

16 % path of Brownian motion at first level cf. Ex2—4

17B = [zeros(1,1);sqrt(T/NO)*cumsum(randn(NO,1)) ];

18 EMX(1, 1:2”L:end) = B;

19

20 % time on the last level

21t = (Tx(0:N) ’/N);

2% plot first picture

23

24 subplot(3.,3,1); plot((T*x(0:NO) */NO), B);

25

26 % refine the brownian path

27 for 1i=2:L+1

28 p = 2N (L—-i+1);

29 EMX(1,:)=EMX(i—1,:);

30 % new step size

31 h= T/(NO*27(i—1));

32 9% number of new random variables needed
33 len=N/p/2;
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34

35
36

37

38
39

40
41
42
43
44

%

%
%

%

%

u<s<t with

EMX(1,

%% plot the
subplot(3,3,1);

end

45 end

is again

Since BM is a gaussian process,

we h

u—s=t—s=h the random variable B_s |
B_t=b)
gaussian with mean (a+b)/2 and variance h/2
[p+1:2%xp: N+l—p])= .5+« (EMX(i,[1:2*xp: N+I1—-2xp
1) +HEMX(i,[2%xp+1:2xp: N+1])) +...
sqrt(h./2)*«randn(1,len);
refined BM
plot(t(1:p:N), EMX(i,

I:p
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Abbildung 1: refined BM path
simulate the BM value at midpoint (t_i+t_(i+1))
/2 given the values
at t_i and t_(i+1)

ave that for

(B_u=a and

:N) 7))



