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1. To show the reflection principle, let 7, = inf{t > 0|B; > y} be the first time the
BM is greater than y. Then, {7, < t} = {M, > y} for y > 0. Furthermore, since
Br, =y, we have

PB,<z,My>y)=P(B,<z,T,<t)=P(B,— Br, <x—y,T,<t).
Relying on the strong Markov property, we obtain

P(By— By, <v—y,T,<t)=E(1{,<nP(B; — Br, <z —y|T,))
= ]E(]-{Tygt}P(Bt — BTy S xr — y))

since (B, := Br,+4 — Br,,u > 0) is a BM independent of (B, < T,). We also note
that — B and B have the same law. Hence,

E(1yz, <ty P(By — Br, <« —y)) = E(lyz,<y P(By — Br, >y — x))
= E<1{Ty§t}P<Bt - BTy > Yy — J}|Ty))
= P(B; > 2y —x,T, <t). (1)

The right hand side of (1) is equal to P(B; > 2y — x) since, from x < y we have
2y — x > y which implies that, on the set { B, > 2y — =}, one has M; > y. Therefore,
it follows that, fory > 0,2 <y,

P(Btﬁfl?aMtﬁy) = P(Bt§$)—P(Bt§$aMt2y)
= P(BtSI)—P(BtZ%—x), )

and hence the first hint is obtained.
For 0 <y < x, since M; > B, we get

P(B; <z, M, <y)=P(B, <y, M <y)=P(M <y).

Furthermore, by setting © = y in (2)
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hence the second hint is obtained. Finally, noticed that for y < 0,
P(BtS%MtSy):O

since M; > M, = 0. Finally, the density for the joint law of (B, M) is obtained by
taking derivatives.

. By the first hint we have
W()(S < S) = Wo(HO oy >1— S).

Let (H?)i>0 be the raw filtration on C([0, 00), R) generated by (the coordinate pro-
cess) X. Conditioning on (H?) and applying the Markov property (Proposition 2.4 in
Section 3.2) yields

Wo(Hyods >1—3s) = Eo[Eo[l{Ho>1—s} o 795‘7'[2“
= Eo[Wx.(Hy > 1—5)] (3)

Now by symmetry (—X is again a BM), Brownian motion is equally likely to hit 0
starting from x as it is to hit « when starting from 0, i.e.,

WXS(HO >1-— S) = WO(H—XS >1-— S) = VVO(['IX5 >1-— S). @)

Since X is continuous, we have H, := inf{s > 0| X, = y} = T, = inf{s > 0|.X, >
y} for y > 0. Moreover, from Ex 5-1 (using the same notation) we know that

P(T, <t)=P(M; >y)
=1— (D(y/Vt) — (—y/V1)).

Therefore, for y > 0 the density of 7}, is given

fr, (1) = €_y2/(2l)1{120}- (5)
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By a complete analogous argument for y < 0 we have

fr, (1) = \/%e—yg/m”l{lzo}, Yy # 0. (6)

Inserting (6) and (4) back into (3), using Fubini’s Theorem and the fact

—cx2/2

o, ec;t/
/wecx/de:— ,
C
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we obtain

W()(S < S) = EO[WO(HXS >1-— S)]
_ Eo[ X xeen dz]
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3. First, we show F C F. Let I" be any non-Borel subset of R not containing 0. Then
{By € T} C {By # 0}. {By # 0} is a P-nullset in Fy, so {By € I'} € Fy. On the
other hand, suppose that {By € I'} € F,. Then {By, € I'} = {B, € "} for some
Borel subset ' C R. For any = € R, there is an w € C]0, 00) such that w(0) = z.
Thus, I' = I", a contradiction.

Next, we show C FF. The set {B; = 0} is a P-nullset in 7, hence it belongs to ]?0.
On the other hand, suppose that {B; = 0} € F. Then there are sets F, G € JF; such
that F C {B; = 0} C G and P[F] = P|G]. Since P[B; = 0] = 0, we thus have
P|G] = 0. Write G = {B,, € I'} for some Borel set I' C R. For any = € R, there is
anw € [0, 00) such that w(0) = x and w(1) = 0. Thenw € {B; = 0} C G, hence
r = w(0) € I'. Since x was arbitrary, I' = R and we conclude G = {B, € R} = (),
contradicting P[G] = 0.

4. Matlab Files

1 function bmsc54

Bitte wenden!



2% In this exercise we numerically compute the
distribution of the last

3% visit time of a BM in point 0.

4 tic

59 parameter input

6 % horizon

7T=1;

8 % sample size

9 N=10"4;

10% grid points

11 M=10"4;

12

13% Simulate BM with normal increments

14BM = [zeros(1,N);sqrt(T/M)xcumsum(randn(M,N)) |;

15% the process X

16 timegrid= 0:T/M:T;

17% initialize the last visiting time

18 lasttime = zeros(1,N);

19

20 % rounding precision

21 precision= 10"2;

22 % round the BM

23 BMround= round (BMxprecision)/precision;

24

25 for i=1:N

26 9% if BM hits zero

27 if sum(BMround(:,1)==0)>0

28 ind= BMround (:,i)==0;

29 % last time BM visits zero

30 lasttime (1)= max(timegrid(ind));
31 end

32 end

33% theoretical distribution function

34 theof = @(x) 2/pixasin(sqrt(x));

35% empirical distribution function

36 [F,X] = ecdf(lasttime);

37 plot (X,F,’ r—" ,X, theof (X)), b=-");

38 title (" ArcSin law of BM: distribution function of L’);
39 xlabel (’time ) ;

40 ylabel (’ probabilities ’);

41 legend (’empirical >,  theoretical ’);

42 toc



ArcSin law of BM: distribution function of L
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Abbildung 1: theoretical cdf of S (cf. Ex 5-2) vs the empirical cdf



