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1. For any g : R — R bounded Borel measurable function, we know that
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Thus, we see that the probability density function of | B;| on R is given by the function
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From Corollary 2.55 of the script, we know that the probability density function of the
joint law of (B;, M;) where M, := sup,,,; B is given by the function
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Take any g : R — R bounded Borel measurable function. We deduce from (2) that
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By a change of variable v := y — z v := y we get that
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By another change of variable n := u and m := w + v and as fxe*cﬂ/Z dx =
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, we get that
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Comparing (1) with (4) yields that M; — B, "= | B,|.
Now, from (2), we deduce for any ¢ : R — R bounded Borel measurable function that
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By a change of variable v := y and v := y — x we get that
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Comparing (3) with (5) yields M; — B; = M.

. Fix any t,h > 0 and f € bB(R). The case where h = 0 is trivial, therefore, let
h > 0. From the lecture (cf. Example 2.23 in Section 3.2 in the lecture notes), we
know that Brownian motion is a Markov process with transition semigroup given by

Ry f(x) = f(x) and

Ry f(x) = \/217T_h/Rf(y) exp <_(y ;h:v)2> dy when h >0, febB(R).

Therefore, we get for f(z) := f(|z|) € bB(R) that
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By a change of variables and by observing that {0} is a null set, we deduce from (6)
that
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By symmetry of the expression in (7), we see that E[ f(X,.4)|G:] = Rpf(—B;) and
thus

E[f(Xe0)|Ge] = Ruf(Xy).
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3.

(a) Let Z; :== M, — B, and Y; := |B,|. With the definition of D we have to check

that
sup Z; faw sup Y;.

0<t<1 0<t<1

Since both Z and Y are continuous processes, it suffices to check that

sup 7 taw sup Y;. (8)
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Let (¢,)nen be a counting sequence in [0, 1] N Q. By Lévy’s Theorem, the pro-
cesses Z and Y have the same law, and therefore for n € N the random variables
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have the same law. Since Z,, and Y,, converge monotonically to sup,c(1ng 2
and sup;co 1jng Y+ we have forall z € R
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which yields (8).

(b) We recall the self-similarity property of Brownian motion, i.e., for ¢ > 0

¢Bye 'Y B,
Therefore, for x > 0
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(c) Using the identity
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and Tonelli’s Theorem we have
E[D] =E[sup |B]
0<t<1
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From Ex 4-2 we know that the Laplace transform of 7} is

Ele 1] = 1/cosh(y/2u), Vu > 0.

Putting everything together, we have
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4. Matlab Files

1 function bmsc64

2% In this exercise we numerically compute the
distribution of the maximum

3% of a BM on [0,1]—BM_1, the absolute value of BM at
time I and the maximum

4% of a BM on [0,1]

5 tic

6 %% parameter input

7% horizon

8 T=1;

9% sample size

10 N=10"4;

11 % grid points

12M=10"4;

13

14% Simulate BM with normal increments

15BM = [zeros(1,N);sqrt(T/M)xcumsum(randn(M,N)) |;

16 % initialize max(BM)—BM_1, max(BM) and |BM_1|
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17 templ = repmat(max(BM) M+1,1)-BM;

18 X1 = templ(end,:) ;

19 X2 = abs(BM(end,:));

20 temp3 = max(BM) ;

21 X3 = temp3(end,:) ;

22

23% theoretical distribution function (cf. Ex 5—1)
24 theof = @(x) 2%normcdf(x)—1;

25% empirical distribution function

26 [Fx1,x1l]=ecdf(X1);

27 [Fx2,x2] = ecdf (X2);

28 [Fx3,x3]=ecdf(X3);

29 figure (1)

30 plot(x1,Fx1,’r—",x1,theof(x1),’b=");

31 title (’distribution of max(BM)-BM’);

32 xlabel (’time’);

33 ylabel (' probabilities ’);

34 legend ("ecdf of max(BM)-BM’,’theoretical ’);
35

36 figure (2)

37 plot (x2,Fx2,’r—",x2,theof(x2),’b=—");

38 title (’distribution of abs(BM)’);

39 xlabel (’time’);

40 ylabel (’probabilities ) ;

41 legend (" ecdf of abs(BM)’,’theoretical ’);
42

43 figure (3)

44 plot (x3,Fx3,’r—",x3,theof(x3),’b—");

45 title ( distribution of max of BM’);

46 xlabel (’time’);

47 ylabel (’ probabilities ) ;

48 legend (" ecdf of max BM’,’theoretical ’);
49 toc

50 end
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Abbildung 1: theoretical cdf of M; — B; (cf. Ex 6-1) vs the empirical cdf
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Abbildung 2: theoretical cdf of | B;| (cf. Ex 6-1) vs the empirical cdf
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Abbildung 3: theoretical cdf of M, (cf. Ex 6-1) vs the empirical cdf



