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1. Without loss of generality, assume that M0 = 0. Suppose first that M has variation,
denoted by Var(M), which is uniformly bounded, i.e. assume that

∃K ≥ 0 such that for P -a.e. ω, ∀t ≥ 0, Vart(M.(ω)) ≤ K. (1)

Fix any t ≥ 0. Consider a subdivision σ of the interval [0, t] given by: 0 = t0 < t1 <
... < tn = t. We define its mesh size by:

‖σ‖ := max
0≤i≤n−1

|ti+1 − ti|.

We claim that by the martingale property of M we have for any 0 ≤ i ≤ n− 1 that
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]
. (2)

Indeed, if (Ft)t≥0 is the filtration generated by M , we get by applying the martingale
property that
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By taking the expectation in the above equality, we proved the claim. Therefore, we
deduce from (2) that
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]
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Thus, due to our assumption (1), we get

E
[
M2

t

]
≤ E

[
Vart(M) max

0≤i≤n−1
|Mti+1

−Mti |
]
≤ KE

[
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0≤i≤n−1
|Mti+1
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]
. (3)

Now, take any sequence (σk)k∈N of subdivisions of [0, t] with lim
n→∞

‖σk‖ = 0. Using

(3), we deduce from the continuity ofM (and so uniform continuity ofM on [0, t]) and
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by using domintated convergence theorem, which we can use as Vart(M.(ω)) ≤ K
for P -a.e. ω by the assumption made in (1), that

E
[
M2

t

]
= 0 which implies that M2

t = 0 P -a.s.

Since t ≥ 0 was arbitrarily chosen, we obtain that

P -a.s., ∀t ∈ Q+, Mt = 0.

Using the continuity of M we obtain that

P -a.s., ∀t ≥ 0, Mt = 0.

Now, let M be a continuous martingale of finite variation starting at 0 without satis-
fying the additional assumption (1). Consider for any k ∈ N the stopping time

τk := inf
{
t ≥ 0

∣∣Vart(M) ≥ k
}
.

As M is an adapted continuous process, Var(M) is continuous and adapted, too.
Hence it is easy to check that for any k, τk is a stopping time. Moreover, τk con-
verges to infinity as k goes to infinity, as M is of finite variation. Moreover, for any
k, the stopped process M τk

t = (M τk
t )t≥0 is a continuous martingale of finite variation

starting at 0 which satisfies the additional condition (1) (for the constant K = k).
Thus, from the above result, we obtain that for any k ∈ N

P -a.s., ∀t ≥ 0, M τk
t = 0.

Thus, letting k goes to infinity, we obtain the desired result.

2. a) By linearity, it suffices to check the claim for monomials of the form p(x) =
xm,m ∈ N. Note that p(W ) is (left-)continuous and adapted, (and hence pre-
dictable and locally bounded). Therefore,

∫
p(W )dW is well-defined, and also a

local martingale. Moreover, by Fubini’s Theorem, for all T ≥ 0,

E
[〈∫

p(W )dW
〉
T
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(4)

=E
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=

∫ T

0

E
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]
ds (6)

=E[W 2m
1 ]

∫ T

0

smds <∞. (7)

This proves that
( ∫

p(W )dW
)T
∈ H2,c

0 for all T ≥ 0 by Ex 7-2 a), implying

that
∫
p(W )dW is a true martingale.
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b) The function f : R2 → R given by f(t, w) := e
1
2
t cosw isC2 andXt = f(t,Wt).

Moreover,

∂f

∂t
(t, w) =

1

2
e

1
2
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∂f

∂w
(t, w) = −e

1
2
t sinw,

∂2f

∂w2
(t, w) = −e

1
2
t cosw.

Since t (viewed as a process) is of finite variation, Itô’s formula yields

dXt =
∂f

∂t
(t, w) dt+

∂f

∂w
(t, w) dWt +

1

2

∂2f

∂w2
(t, w) d〈W ]t

= −e
1
2
t sinWt dWt,

so X is a local martingale. Since sup0≤t≤T |Xt| ≤ e
1
2
T for each T ≥ 0, X is a

martingale.

c) Being adapted, left-continuous and bounded, % ∈ L2
loc(W ) and

√
1− %2 ∈

L2
loc(W

′). Moreover, for each t ≥ 0, using bilinearity of [·, ·] and the fact that
[W,W ′] = 0 due to independence of W and W ′,

[B]t =

[∫
% dW

]
t

+

[∫ √
1− %2 dW ′

]
t

=

∫ t

0

%2
s ds+

∫ t

0

(1− %2
s) ds = t,

so Lévy’s characterisation of Brownian motion yields that B is a Brownian mo-
tion. Finally,

[B,W 〉t =

∫ t

0

%s d[W,W 〉s =

∫ t

0

%s ds.

3. a) Let t > 0. Using that ∆Nt is either 0 or 1, we have P -a.s.(
λ̃

λ

)∆Nt

=
λ̃

λ
∆Nt + (1−∆Nt) = 1 +

λ̃− λ
λ

∆Nt .

Using this, we arrive at

St = e(λ−λ̃)t

(
λ̃

λ

)Nt−+∆Nt

⇒ ∆St = e(λ−λ̃)t

(
λ̃

λ

)Nt−(( λ̃
λ
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− 1

)
= St−

λ̃− λ
λ

∆Nt . (8)

b) We have
St = exp

(
(λ− λ̃)t+ log(λ̃/λ)Nt

)
. (9)
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Applying the hint with f(·) = exp(·), α = λ − λ̃, β = log(λ̃/λ) and using part
a) and Xt = log(λ̃/λ)Nt + (λ− λ̃)t, we get P - a.s. for all t ≥ 0

St = exp(0) + (λ− λ̃)

∫ t

0

exp(Xu−) du+
∑

0<u≤t

(
exp(Xu)− exp(Xu−)

)
= 1 + (λ− λ̃)

∫ t

0

Su− du+
∑

0<u≤t

∆Su

= 1 +
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λ

(
−
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0

Su−λdu+
∑
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= 1 +
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λ

∫ t

0

Su−( dNu − d(λu)) = 1 +
λ̃− λ
λ

∫ t

0

Su− dÑu .

c) It can be easily verified that Ñ is a (P,F)-martingale. Since λ̃−λ
λ
S− is adapted

and left-continuous, (hence predictable and locally bounded), it follows that S is
a local (P,F)-martingale. By the hint, S is a true (P,F)-martingale if

E[ sup
0≤t≤T

|St|] = E[ sup
0≤t≤T

St] <∞. (10)

But since
sup

0≤t≤T
St ≤ CeNT

for some constant C > 0 and since NT ∼ Pois(λT ), we conclude that (10) is
true.

4. a) Let X = (Xt)t≥0 be a uniformly integrable, right-continuous martingale. Set
Y := Z(Xτ −Xσ) and fix a stopping time %. We will show that E[|Y%|] < ∞
and E[Y%] = 0. The assertion then follows from the hint (cf. Lemma 4.1.19 in the
lecture notes).

Since X is uniformly integrable, the stopping theorem yields E[X∞|Fγ] = Xγ

for any stopping time γ. In particular, the family {Xγ : γ a stopping time} is
uniformly integrable (i.e., X is of class (D)), hence bounded in L1. It follows
that

E[|Y%|] ≤ C(E[|Xτ∧%|] + E[|Xσ∧%|]) <∞
where C > 0 is any constant bounding Z.

Next, we show thatE[Y%] = 0. By a monotone class argument or simply measure-
theoretic induction, we may assume that Z = 1A for some A ∈ Fσ. Then τA :=
τ1A +∞1Ac and σA := σ1A +∞1Ac are stopping times and

E[Y%] = E[1A(X%∧τ −X%∧σ)] = E[X%∧τA −X%∧σA ] = 0,
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where we use the stopping theorem in the last equality.

If X is not uniformly integrable, then assuming that % is bounded, almost the
same proof yields that Y is a martingale (but not uniformly integrable in general),
c.f. Remark 4.(1.20) in the lecture notes.

b) The equality B := Z[M τ − Mσ, N ] = Z([M,N ]τ − [M,N ]σ) follows from
bilinearity of [·, ·] and from the fact that for any stopping time τ ,

[M τ , N ] = [M,N τ ] = [M,N ]τ .

Next, we note that Y := Z(M τ − Mσ) ∈ Mc
0,loc by part a) and localisati-

on. So [Y,N ] is well-defined. We also note that the process B is continuous
and of finite variation. Moreover, since B = 0 on [[0, σ]], we can write B =
(Z1]]σ,∞]])([M,N ]τ − [M,N ]σ) to see that B is also adapted.

Setting X := (M τ −Mσ)N − [M τ −Mσ, N ] ∈Mc
0,loc and noting that Xσ = 0,

we have

Y N −B = Z((M τ −Mσ)N − [M τ −Mσ, N ]) = Z(X −Xσ).

By part a) and localisation, Z(X −Xσ) ∈ Mc
0,loc. Thus, as [Y,N ] is the unique

process B̃ of cFV0 such thatMN− B̃ ∈Mc
0,loc, we conclude by uniqueness that

[Y,N ] = B.

c) Clearly, H := Z1]]σ,τ ]] is left-continuous. Moreover for t ≥ 0, the second factor
in Ht = (Z1{σ<t})1{t≤τ} is Ft-measurable since τ is a stopping time, while the
Ft-measurability of the first factor follows from the hint. Thus, H is adapted and
hence predictable. Since H is also bounded, it follows that the stochastic integral
is well-defined. Now, for any N ∈Mc

0,loc, we have

[Z(M τ−Mσ), N ]
b)
= Z([M,N ]τ−[M,N ]σ) =

∫
Z1]]σ,τ ]] d[M,N ] =

∫
Hd[M,N ].

Thus by the defining property of the stochastic integral,
∫
H dM = Z(M τ−Mσ)

(cf. Proposition 4.2.16 in the lecture notes.)

Finally, from part a), we see that ifM is a (uniformly integrable) martingale, then∫
H dM = Z(M τ −Mσ) is a (uniformly integrable) martingale.


