Brownian Motion and Stochastic CalculusSketch of Solution Sheet 9

1. Without loss of generality, assume that $M_0 = 0$. Suppose first that M has variation, denoted by Var(M), which is uniformly bounded, i.e. assume that

$$\exists K \ge 0 \text{ such that for } P\text{-a.e. } \omega, \ \forall t \ge 0, \ \operatorname{Var}_t(M.(\omega)) \le K.$$
 (1)

Fix any $t \ge 0$. Consider a subdivision σ of the interval [0,t] given by: $0 = t_0 < t_1 < \dots < t_n = t$. We define its mesh size by:

$$\|\sigma\| := \max_{0 \le i \le n-1} |t_{i+1} - t_i|.$$

We claim that by the martingale property of M we have for any $0 \le i \le n-1$ that

$$E\left[\left(M_{t_{i+1}} - M_{t_i}\right)^2\right] = E\left[M_{t_{i+1}}^2 - M_{t_i}^2\right]. \tag{2}$$

Indeed, if $(\mathcal{F}_t)_{t\geq 0}$ is the filtration generated by M, we get by applying the martingale property that

$$E\left[\left(M_{t_{i+1}} - M_{t_i}\right)^2 \middle| \mathcal{F}_{t_i}\right] = E\left[M_{t_{i+1}}^2 \middle| \mathcal{F}_{t_i}\right] - 2M_{t_i} E\left[M_{t_{i+1}} \middle| \mathcal{F}_{t_i}\right] + M_{t_i}^2$$
$$= E\left[M_{t_{i+1}}^2 \middle| \mathcal{F}_{t_i}\right] - M_{t_i}^2.$$

By taking the expectation in the above equality, we proved the claim. Therefore, we deduce from (2) that

$$E[M_t^2] = E\left[\sum_{i=0}^{n-1} (M_{t_{i+1}} - M_{t_i})^2\right].$$

Thus, due to our assumption (1), we get

$$E\left[M_t^2\right] \le E\left[\operatorname{Var}_t(M) \max_{0 \le i \le n-1} |M_{t_{i+1}} - M_{t_i}|\right] \le KE\left[\max_{0 \le i \le n-1} |M_{t_{i+1}} - M_{t_i}|\right].$$
 (3)

Now, take any sequence $(\sigma_k)_{k\in\mathbb{N}}$ of subdivisions of [0,t] with $\lim_{n\to\infty} \|\sigma_k\| = 0$. Using (3), we deduce from the continuity of M (and so uniform continuity of M on [0,t]) and

Bitte wenden!

by using domintated convergence theorem, which we can use as $Var_t(M.(\omega)) \leq K$ for P-a.e. ω by the assumption made in (1), that

$$E\left[M_t^2\right]=0$$
 which implies that $M_t^2=0$ P-a.s.

Since $t \ge 0$ was arbitrarily chosen, we obtain that

$$P$$
-a.s., $\forall t \in \mathbb{Q}_+, M_t = 0$.

Using the continuity of M we obtain that

P-a.s.,
$$\forall t \geq 0, M_t = 0.$$

Now, let M be a continuous martingale of finite variation starting at 0 without satisfying the additional assumption (1). Consider for any $k \in \mathbb{N}$ the stopping time

$$\tau_k := \inf \{ t \ge 0 \mid \operatorname{Var}_t(M) \ge k \}.$$

As M is an adapted continuous process, Var(M) is continuous and adapted, too. Hence it is easy to check that for any k, τ_k is a stopping time. Moreover, τ_k converges to infinity as k goes to infinity, as M is of finite variation. Moreover, for any k, the stopped process $M_t^{\tau_k} = (M_t^{\tau_k})_{t \geq 0}$ is a continuous martingale of finite variation starting at 0 which satisfies the additional condition (1) (for the constant K = k). Thus, from the above result, we obtain that for any $k \in \mathbb{N}$

$$P$$
-a.s., $\forall t \geq 0, M_t^{\tau_k} = 0.$

Thus, letting k goes to infinity, we obtain the desired result.

2. a) By linearity, it suffices to check the claim for monomials of the form $p(x) = x^m, m \in \mathbb{N}$. Note that p(W) is (left-)continuous and adapted, (and hence predictable and locally bounded). Therefore, $\int p(W)dW$ is well-defined, and also a local martingale. Moreover, by Fubini's Theorem, for all $T \geq 0$,

$$\mathbb{E}\left[\left\langle \int p(W)dW\right\rangle_{T}\right] = E\left[\int_{0}^{T} W_{s}^{2m} d\langle W\rangle_{s}\right] \tag{4}$$

$$=E\left[\int_{0}^{T}W_{s}^{2m}ds\right] \tag{5}$$

$$= \int_{0}^{T} E\left[W_{s}^{2m}\right] ds \tag{6}$$

$$=E[W_1^{2m}]\int_0^T s^m ds < \infty. \tag{7}$$

This proves that $\left(\int p(W)dW\right)^T\in\mathcal{H}_0^{2,c}$ for all $T\geq 0$ by Ex 7-2 a), implying that $\int p(W)dW$ is a true martingale.

Siehe nächstes Blatt!

b) The function $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(t, w) := e^{\frac{1}{2}t} \cos w$ is C^2 and $X_t = f(t, W_t)$. Moreover,

$$\frac{\partial f}{\partial t}(t,w) = \frac{1}{2}e^{\frac{1}{2}t}\cos w, \ \frac{\partial f}{\partial w}(t,w) = -e^{\frac{1}{2}t}\sin w, \ \frac{\partial^2 f}{\partial w^2}(t,w) = -e^{\frac{1}{2}t}\cos w.$$

Since t (viewed as a process) is of finite variation, Itô's formula yields

$$dX_t = \frac{\partial f}{\partial t}(t, w) dt + \frac{\partial f}{\partial w}(t, w) dW_t + \frac{1}{2} \frac{\partial^2 f}{\partial w^2}(t, w) d\langle W]_t$$
$$= -e^{\frac{1}{2}t} \sin W_t dW_t,$$

so X is a local martingale. Since $\sup_{0 \le t \le T} |X_t| \le e^{\frac{1}{2}T}$ for each $T \ge 0$, X is a martingale.

c) Being adapted, left-continuous and bounded, $\varrho \in L^2_{\mathrm{loc}}(W)$ and $\sqrt{1-\varrho^2} \in L^2_{\mathrm{loc}}(W')$. Moreover, for each $t \geq 0$, using bilinearity of $[\cdot,\cdot]$ and the fact that [W,W']=0 due to independence of W and W',

$$[B]_{t} = \left[\int \varrho \, dW \right]_{t} + \left[\int \sqrt{1 - \varrho^{2}} \, dW' \right]_{t} = \int_{0}^{t} \varrho_{s}^{2} \, ds + \int_{0}^{t} (1 - \varrho_{s}^{2}) \, ds = t,$$

so Lévy's characterisation of Brownian motion yields that B is a Brownian motion. Finally,

$$[B, W\rangle_t = \int_0^t \varrho_s d[W, W\rangle_s = \int_0^t \varrho_s ds.$$

3. a) Let t > 0. Using that ΔN_t is either 0 or 1, we have P-a.s.

$$\left(\frac{\widetilde{\lambda}}{\lambda}\right)^{\Delta N_t} = \frac{\widetilde{\lambda}}{\lambda} \Delta N_t + (1 - \Delta N_t) = 1 + \frac{\widetilde{\lambda} - \lambda}{\lambda} \Delta N_t.$$

Using this, we arrive at

$$S_{t} = e^{(\lambda - \widetilde{\lambda})t} \left(\frac{\widetilde{\lambda}}{\lambda}\right)^{N_{t-} + \Delta N_{t}} \Rightarrow \Delta S_{t} = e^{(\lambda - \widetilde{\lambda})t} \left(\frac{\widetilde{\lambda}}{\lambda}\right)^{N_{t-}} \left(\left(\frac{\widetilde{\lambda}}{\lambda}\right)^{\Delta N_{t}} - 1\right)$$

$$= S_{t-} \frac{\widetilde{\lambda} - \lambda}{\lambda} \Delta N_{t}. \tag{8}$$

b) We have

$$S_t = \exp\left((\lambda - \widetilde{\lambda})t + \log(\widetilde{\lambda}/\lambda)N_t\right). \tag{9}$$

Applying the hint with $f(\cdot) = \exp(\cdot)$, $\alpha = \lambda - \widetilde{\lambda}$, $\beta = \log(\widetilde{\lambda}/\lambda)$ and using part a) and $X_t = \log(\widetilde{\lambda}/\lambda)N_t + (\lambda - \widetilde{\lambda})t$, we get P- a.s. for all $t \ge 0$

$$S_{t} = \exp(0) + (\lambda - \widetilde{\lambda}) \int_{0}^{t} \exp(X_{u-}) du + \sum_{0 < u \le t} \left(\exp(X_{u}) - \exp(X_{u-}) \right)$$

$$= 1 + (\lambda - \widetilde{\lambda}) \int_{0}^{t} S_{u-} du + \sum_{0 < u \le t} \Delta S_{u}$$

$$= 1 + \frac{\widetilde{\lambda} - \lambda}{\lambda} \left(- \int_{0}^{t} S_{u-} \lambda du + \sum_{0 < u \le t} S_{u-} \Delta N_{u} \right)$$

$$= 1 + \frac{\widetilde{\lambda} - \lambda}{\lambda} \int_{0}^{t} S_{u-} (dN_{u} - d(\lambda u)) = 1 + \frac{\widetilde{\lambda} - \lambda}{\lambda} \int_{0}^{t} S_{u-} d\widetilde{N}_{u}.$$

c) It can be easily verified that \widetilde{N} is a (P,\mathcal{F}) -martingale. Since $\frac{\widetilde{\lambda}-\lambda}{\lambda}S_{-}$ is adapted and left-continuous, (hence predictable and locally bounded), it follows that S is a local (P,\mathcal{F}) -martingale. By the hint, S is a true (P,\mathcal{F}) -martingale if

$$\mathbb{E}[\sup_{0 < t < T} |S_t|] = \mathbb{E}[\sup_{0 < t < T} S_t] < \infty. \tag{10}$$

But since

$$\sup_{0 \le t \le T} S_t \le Ce^{N_T}$$

for some constant C>0 and since $N_T\sim {\rm Pois}(\lambda T)$, we conclude that (10) is true.

4. a) Let $X=(X_t)_{t\geq 0}$ be a uniformly integrable, right-continuous martingale. Set $Y:=Z(X^\tau-X^\sigma)$ and fix a stopping time ϱ . We will show that $E[|Y_\varrho|]<\infty$ and $E[Y_\varrho]=0$. The assertion then follows from the hint (cf. Lemma 4.1.19 in the lecture notes).

Since X is uniformly integrable, the stopping theorem yields $E[X_{\infty}|\mathcal{F}_{\gamma}] = X_{\gamma}$ for any stopping time γ . In particular, the family $\{X_{\gamma} : \gamma \text{ a stopping time}\}$ is uniformly integrable (i.e., X is of class (D)), hence bounded in L^1 . It follows that

$$E[|Y_{\varrho}|] \le C(E[|X_{\tau \wedge \varrho}|] + E[|X_{\sigma \wedge \varrho}|]) < \infty$$

where C > 0 is any constant bounding Z.

Next, we show that $E[Y_{\varrho}]=0$. By a monotone class argument or simply measure-theoretic induction, we may assume that $Z=1_A$ for some $A\in\mathcal{F}_{\sigma}$. Then $\tau_A:=\tau 1_A+\infty 1_{A^c}$ and $\sigma_A:=\sigma 1_A+\infty 1_{A^c}$ are stopping times and

$$E[Y_{\varrho}] = E[1_A(X_{\varrho \wedge \tau} - X_{\varrho \wedge \sigma})] = E[X_{\varrho \wedge \tau_A} - X_{\varrho \wedge \sigma_A}] = 0,$$

Siehe nächstes Blatt!

where we use the stopping theorem in the last equality.

If X is not uniformly integrable, then assuming that ϱ is bounded, almost the same proof yields that Y is a martingale (but not uniformly integrable in general), c.f. Remark 4.(1.20) in the lecture notes.

b) The equality $B := Z[M^{\tau} - M^{\sigma}, N] = Z([M, N]^{\tau} - [M, N]^{\sigma})$ follows from bilinearity of $[\cdot, \cdot]$ and from the fact that for any stopping time τ ,

$$[M^{\tau}, N] = [M, N^{\tau}] = [M, N]^{\tau}.$$

Next, we note that $Y:=Z(M^{\tau}-M^{\sigma})\in \mathcal{M}_{0,\mathrm{loc}}^c$ by part **a**) and localisation. So [Y,N] is well-defined. We also note that the process B is continuous and of finite variation. Moreover, since B=0 on $[\![0,\sigma]\!]$, we can write $B=(Z1_{[\![\sigma,\infty]\!]})([M,N]^{\tau}-[M,N]^{\sigma})$ to see that B is also adapted.

Setting $X:=(M^\tau-M^\sigma)N-[M^\tau-M^\sigma,N]\in\mathcal{M}^c_{0,\mathrm{loc}}$ and noting that $X^\sigma=0$, we have

$$YN - B = Z((M^{\tau} - M^{\sigma})N - [M^{\tau} - M^{\sigma}, N]) = Z(X - X^{\sigma}).$$

By part **a**) and localisation, $Z(X-X^{\sigma})\in \mathcal{M}_{0,loc}^{c}$. Thus, as [Y,N] is the unique process \widetilde{B} of cFV_{0} such that $MN-\widetilde{B}\in \mathcal{M}_{0,loc}^{c}$, we conclude by uniqueness that [Y,N]=B.

c) Clearly, $H := Z1_{\llbracket \sigma, \tau \rrbracket}$ is left-continuous. Moreover for $t \geq 0$, the second factor in $H_t = (Z1_{\{\sigma < t\}})1_{\{t \leq \tau\}}$ is \mathcal{F}_t -measurable since τ is a stopping time, while the \mathcal{F}_t -measurability of the first factor follows from the hint. Thus, H is adapted and hence predictable. Since H is also bounded, it follows that the stochastic integral is well-defined. Now, for any $N \in \mathcal{M}_{0,\text{loc}}^c$, we have

$$[Z(M^{\tau}-M^{\sigma}),N] \stackrel{\mathrm{b)}}{=} Z([M,N]^{\tau}-[M,N]^{\sigma}) = \int Z\mathbf{1}_{\llbracket \sigma,\tau \rrbracket} \, d[M,N] = \int Hd[M,N].$$

Thus by the defining property of the stochastic integral, $\int H dM = Z(M^{\tau} - M^{\sigma})$ (cf. Proposition 4.2.16 in the lecture notes.)

Finally, from part **a**), we see that if M is a (uniformly integrable) martingale, then $\int H dM = Z(M^{\tau} - M^{\sigma})$ is a (uniformly integrable) martingale.