D-MATH, FS 2015

Exercise Sheet 10

1. Let M be a connected manifold. Two metrics g and \tilde{g} on M are called *conformally equivalent* if there is a smooth, positive function ϕ on M such that $\tilde{g} = \phi g$. The metrics g and \tilde{g} then have the same angles but not the same lengths (unless $\phi \equiv 1$).

Let g fixed.

- (a) Show that there is a complete metric \tilde{g} on M that is conformally equivalent to g.
- (b) Show that there is a conformally equivalent metric \tilde{g} on M of finite diameter. (N.B. $\operatorname{diam}(M,g) := \sup \{d(x,y) : x,y \in M\}$).
- (c) Observe that for any given compact subset $K \subset M$, the conformally equivalent metric \tilde{g} in **a**) or **b**) may be chosen such that $\tilde{g}|_K = g|_K$.
- **2.** Construct a regular octagon in the hyperbolic plane H^2 as follows. Let $\tilde{p_j} := re^{2\pi i j/8}$, $j = 0, 1, 2, \ldots, 7$, be the vertices of a regular octagon in T_qH^2 , let $p_j := \exp_q(\tilde{p_j})$, and let γ_j be the (unique) geodesic segment in H^2 connecting p_j to p_{j+1} . P_r is the region bounded by $\bigcup_{j=0}^7 \gamma_j$.

(N.B: \exp_p^{-1} is not a polygon but has a spiky look).

- (a) Glue the edges of P_r to each other as depicted. How many edges and vertices does the glued figure have?
- (b) Show that for some r > 0, the construction yields a smooth, closed surface Σ that is locally isometric to the hyperbolic plane. *Hint:* study the interior angles of P_r as a function of r. The case $r \to 0$ and $r \to \infty$ are easier.

- (d) (*) How many isometries does Σ have?
- (e) (**) Find the diameter of Σ .

3. Let V and W be real vector spaces. A tensor $T \in V \otimes W$ is called *decomposable* or a *pure* tensor if $T = v \otimes w$ for some vectors $v \in V$ and $w \in W$. Let P be the pure tensors in $V \otimes W$.

- (a) Find an algebraic criterion that selects the pure tensors in $\mathbb{R}^2 \otimes \mathbb{R}^2$. Describe this set geometrically.
- (b) Show (for general V and W) that P is a quadratic variety and a cone.
- (c) Show P is a smooth manifold except at the origin and calculate the dimension.
- **4.** (Symmetric Spaces) Let M be a connected Riemannian manifold such that for each $p \in M$ there is an isometry σ_p of M such that
 - i) σ_p fixes p
 - ii) σ_p reverses each geodesic through p.

Such an M is called a *symmetric space*.

- (a) Show that the maps σ_p satisfying i) and ii) are unique.
- (b) Show that the map

$$M \times M \to M$$
, $(p,q) \mapsto \sigma_p(q)$,

is smooth.

- (c) Show that M is complete.
- (d) Let γ be a non-constant geodesic. Define

$$\tau_{\gamma,t} = \sigma_{\gamma(t/2)} \circ \sigma_{\gamma(0)}.$$

Show that $t \mapsto \tau_{\gamma,t}$ is a one-parameter group of isometries that 'translates' along γ .

- **5.** (a) Prove that $\mathbb{H}^n = \left(B, \frac{4\sum_{i=1}^n \left(dx^i\right)^n}{\left(1-|x|^2\right)}\right)$ is a symmetric space by exhibiting the isometry $\sigma_x, \ x \in \mathbb{H}^n$.
 - (b) Let $S_+=\left\{g\in Sym^2\left(\mathbb{R}^n\right)\mid g>0\right\}$ the space of positive symmetric tensors. Give S_+ the Riemannian metric G

$$G_g(h, f) = \langle h, l \rangle_g = g^{ij} g^{kl} h_{i,j} f_{j,l}$$

where $h, f \in T_qS_+$. Show (S_+, G) is asymmetric space.

(c) If n = 2, show that S_+ is isometric to $\mathbb{H} \times \mathbb{R}$.

Hint: it helps to define

$$S_{+}^{1} = \{ g \in S_{+} \mid \det(g)_{\delta} = 1 \}$$

where $\delta = (\delta_{ij})$ and $\det_h(g) = \det(h^{-1}g)$. Then show that $PSL_2(\mathbb{R})$ acts on S^1_+ .

Due on Friday 15 May