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Exercise Sheet 11

1. Let M be a Riemannian manifold. Show that in local coordinates x1, . . . , xn the
components of the curvature tensor Ri
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2. Show that on a Lie group with a bi-invariant metric

(a)

RpX,Y qZ “
1

4
rrX,Y s, Zs and RmpX,Y,X, Y q “

1
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for all left-invariant vector fields X, Y and Z.

(b) Let q PM and P be a 2-plane in TqM . The sectional curvature of P is defined by

kpq, P q :“ Rmpe1, e2, e1, e2q

where e1, e2 is an ortonormal basis of P . (We will see in the next exercise sheet
that the sectional curvature is well-defined). Compute the sectional curvature of
S3 (use the bi -invariant metric of Exercise sheet 2).

(c) Show that the sectional curvature of SOpnq is everywhere non-negative (use the
bi -invariant metric of Exercise sheet 1).

3. (Infinitesimal Circumference and Area) Let M be a Riemannian 2-manifold. Let Cprq
and Aprq denote the circumference and area of the geodesic ball Brppq in M , and set
K “ Kppq “ Rpe1, e2, e1, e2q. Show
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4. (Theorema Egregium) Let M be isometrically embedded in R3. Show

K “ k1k2,
1



where k1 and k2 are the principle curvatures. Hint: Write M as a graph over TpM
of a function u with up0q “ 0 and Dup0q “ 0. Then k1 and k2 are the eigenvalues of
D2up0q. Now Exercise 1 and/or Exercise 3 could be helpful.

5. (Symmetric Spaces) Let M be a connected Riemannian manifold. Assume that M is
a symmetric space.

(a) Show that for each vector V in TpM there is a unique Killing field X on M such
that Xppq “ V , DXppq “ 0.

(b) Compute the Riemann curvature at p using these Killing fields.
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