Exercise Sheet 5

1. Let D^{1}, D^{2} be two connections on a vector bundle E.
(a) Show

$$
\Delta(X, V):=D_{X}^{2} V-D_{X}^{1} V
$$

defines a bilinear map

$$
\Delta(p): T_{p} M \times E_{p} \rightarrow E_{p}
$$

at each point $p \in M$. (That is, $\Delta(X, Y)(p)$ depends only on $X(p)$ and $V(p)$ and not on derivatives of X or V at p.) Note that Δ defines a section of the bundle $\operatorname{Bilin}(T M, E ; E)$.
(b) Show for any connection D^{1} on E and any smooth family of bilinear maps $\Delta(p): T_{p} M \times E_{p} \rightarrow E_{p}$, the expression

$$
D_{X}^{2} V:=D_{X}^{1} V+\Delta(X, V)
$$

defines a connection on E.
(c) Conclude that the space of (smooth) connections on E is an affine space over the vectorspace $C^{\infty}(\operatorname{Bilin}(T M, E ; E))$.
2. Let E be a trivial line bundle over M. Let $\langle-,-\rangle_{E}$ be an inner product on the fibers of E. Suppose D is a connection on E that is compatible with $\langle-,-\rangle_{E}$. Prove that there exists a parallel section for D.
3. Consider the upper half-plane

$$
\mathbb{R}_{+}^{2}:=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}
$$

equipped with the hyperbolic metric

$$
g_{i j}:=\frac{\delta_{i j}}{y^{2}}
$$

(a) Show that the Christoffel symbols of the Riemannian connection of g are

$$
\Gamma_{11}^{1}=\Gamma_{12}^{2}=\Gamma_{22}^{1}=0, \quad \Gamma_{11}^{2}=\frac{1}{y}, \quad \Gamma_{12}^{1}=\Gamma_{22}^{2}=-\frac{1}{y}
$$

(b) Let $Y_{0}:=(1,0)$ be a tangent vector at the point $(0,1) \in \mathbb{R}_{+}^{2}$. Let $Y(t)$ be the parallel transport of Y_{0} along the curve $\gamma: t \mapsto(t, 1)$. Show that $Y(t)$ forms an angle $-t$ with γ. Draw it
(c) Conclude heuristically that a traveler moving along γ is turning to the left.
4. Let E be a complex line bundle over $M=\mathbb{R}^{2}$ equipped with an i-invariant inner product $\langle\cdot, \cdot\rangle$, i.e. $\langle i X, i Y\rangle=\langle X, Y\rangle$ for all X, Y, and let D be a connection compatible with $\langle\cdot, \cdot\rangle$.
(a) Show that as a real 2-plane bundle, E possesses a global orthonormal frame e_{1}, e_{2} satisfying $e_{2}=i e_{1}$. (Recall that any vector bundle over a contractible space is trivial.)
(b) Show that D has the form

$$
D=D^{0}-i \omega,
$$

where ω is a section of $C^{\infty}\left(T^{*} M\right)$ (a 1-form), $i: E_{p} \rightarrow E_{p}$ is multiplication by the complex unit, and D^{0} is the connection induced by the frame e_{1}, e_{2}. Conversely, any operator D of this form is a connection on E compatible with $\langle\cdot, \cdot\rangle$. (The - sign is only an useful convention.)
(c) Show that D is also compatible with i, that is

$$
D_{X}(i V)=i D_{X} V
$$

for all $X \in C^{\infty}(T M), V \in C^{\infty}(E)$.
(d) Let V be a section of the form $V=e^{i \theta} e_{1}, \theta \in C^{\infty}\left(\mathbb{R}^{2}\right)$. Show: V is parallel if and only if $d \theta=\omega$.
(e) Write the 1 -form ω as

$$
\omega=a(x, y) d x+b(x, y) d y \quad \text { on } M=\mathbb{R}^{2}
$$

$a, b \in C^{\infty}(M)$. Show that E possesses a parallel section if and only if

$$
\frac{\partial b}{\partial x}-\frac{\partial a}{\partial y}=0 .
$$

Since a and b can be specified arbitrarily, it is not very likely that a random chosen connection D has a parallel section.
5. Let (M, g) be a Riemannian manifold and let (N, h) be an isometrically embedded submanifold. Show that the Levi-Civita connection of (N, h) is obtained from the Levi-Civita connection of (M, g) by orthogonal projection.

Due on Friday April 3

