Exercise Sheet 6

- **1.** Let $E \to \mathbb{R}^2$, $D = D^0 i\omega, \langle \cdot, \cdot \rangle$ be as in sheet 5, $\omega \in C^{\infty}(TM^*)$. Let $\gamma \colon [0,1] \to \mathbb{R}^2$ be a closed curve, $\gamma(0) = \gamma(1) = p$.
 - (a) Show that the holonomy $H_{p,\gamma}: E_p \to E_p$ is given by

$$H_{p,\gamma}(V) = e^{i\int_0^1 \omega(\gamma(t))(\dot{\gamma}(t))dt}V, \quad V \in E_p.$$

(b) If γ is the boundary of a region $W \subseteq \mathbb{R}^2$, and D is defined over W, then convert the above expression to an integral over W:

$$H_{p,\gamma}(V) = e^{i\int_W \left(\frac{\partial b}{\partial x} - \frac{\partial a}{\partial y}\right) dx dy} V,$$

where $\omega = a(x, y) dx + b(x, y) dy$.

(c) Now work over $U := \mathbb{R}^2 \setminus \{0\}$, and define ω on U by

$$\omega := \lambda \frac{-x \, dy + y \, dx}{x^2 + y^2}, \quad (x, y) \neq (0, 0),$$

where $\lambda \in \mathbb{R}$ is constant. Show that *E* possesses a parallel section in a small ball around each point of *U*.

- (d) For what values of λ does $E|_U$ possess a global parallel section?
- **2.** Consider the surface of revolution $M \subseteq \mathbb{R}^3$ parametrized by

$$(x,\theta) \mapsto (x,u(x)\cos(\theta),u(x)\sin(\theta))$$

where $u : \mathbb{R} \to (0, \infty)$ is smooth.

- (a) Compute the Christoffel symbols of the induced metric in (x, θ) coordinates.
- (b) Show that each longitude $\{\theta = \theta_0\}$ is a geodesic in M.
- (c) Derive necessary and sufficient conditions for a latitude circle $\{x = x_0\}$ to be a geodesic.
- **3.** (a) Let M be a submanifold of \mathbb{R}^n . Show that a curve γ in M is a geodesic if and only if its acceleration (in \mathbb{R}^n) is perpendicular to M at every point.
 - (b) Let M be a surface in \mathbb{R}^3 and P a plane that intersects M orthogonally. Show that $\gamma := M \cap P$ is the trace of a geodesic in M.
 - (c) Use this to find some easy geodesics on a surface of revolution.

Tom Ilmanen

4. (a) Consider the 1-parameter family of block matrices

$$A(t) := \begin{pmatrix} R(\alpha_1 t) & & \\ & \ddots & \\ & & R(\alpha_m t) \\ & & & 1 \end{pmatrix} \in \operatorname{SO}(n)$$

where

$$R(\theta) := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix},$$

 $m = \lfloor n/2 \rfloor, \alpha_1, \ldots, \alpha_m \in \mathbb{R}$ and 1 appears if and only if n is odd.

Show that the A(t)'s are geodesics in $SO(n) \subset \mathbb{R}^{n \times n}$.

- (b) Show that every geodesic in SO(n) starting at the identity matrix has the above form for some choice of basis of \mathbb{R}^n .
- **5.** For $x, y \in \mathbb{R}, y > 0$, let $f_{x,y}$ denote the affine transformation

$$f_{x,y}(t) := yt + x, \qquad t \in \mathbb{R}$$

of the real line. Let G be the set of all such transformations.

- (a) Observe that, under composition, G is a Lie group whose underlying manifold is the upper half plane $\mathbb{R} \times \mathbb{R}_+$ and whose identity element is (0, 1).
- (b) Show that G has no bi-invariant metric.
- (c) Determine a left-invariant metric g on G via

$$g_{ij}(0,1) = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$

What familiar Riemannian manifold is this?

(d) Show that the geodesics that pass through the identity element of G are not oneparameter subgroups. So the two notions of exponential map for Lie groups and for Riemannian metrics do not coincide in general.

> Due on Friday April 17 2