Exercise Sheet 3

1. Let $f:\left(M^{m}, g\right) \rightarrow\left(N^{n}, h\right)$ be a smooth map, with $m \geqslant n$. Define $|J f(x)|:=$ $\operatorname{det}\left(d f(x) \circ d f(x)^{T}\right)$. The coarea formula states that

$$
\int_{M} u(x)|J f(x)| d \mu_{g}(x)=\int_{N} \int_{f^{-1}(y)} u(z) d \mu_{g^{y}}(z) d \mu_{h}(y)
$$

where g^{y} is the induced metric on $f^{-1}(y)$. (Note that by Sard's theorem and the submersion theorem, y is a regular value of f, and $f^{-1}(y)$ is a smooth submanifold of M of dimension $m-n$ for μ_{h}-a.e. y in N, and we don't bother integrating over the measure-zero set of critical values. If you don't like this argument, only consider the case where f is a submersion.)

Now let f be a submersion. Decompose $T_{p} M=V_{p} \oplus H_{p}$, where $V_{p}:=\operatorname{ker}\left(d f_{p}\right)$ and $H_{p}:=V_{p}^{\perp}$ are called the vertical and horizontal subspaces of $T_{p} M$ with respect to f. We call f a Riemannian submersion if

$$
d f_{p} \mid H_{p}: H_{p} \rightarrow T_{q} N
$$

is an isometry for all $p \in M$.
(a) Show that the Hopf fibration $f: S^{3} \rightarrow S^{2}$ is a Riemannian submersion, if we adjust the radius of S^{2} appropriately. (Hint: Use a well-chosen frame.) What is this magic radius?
(b) Use the co-area formula to compute $\operatorname{vol}\left(S^{3}\right)$.
2. Let $j: S^{1} \rightarrow \mathbb{R}^{2}$ be the standard embedding. Let L be the twisted \mathbb{R}-bundle over S^{1} (i.e. the Möbius strip). Let $\pi_{i}: \mathbb{R}^{4}=\mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the projection onto the i-factor, $i=1,2$.
(a) Find an embedding $F: L \rightarrow \mathbb{R}^{4}$ such that $\pi_{1} \circ F=j$ and $\pi_{2} \circ F$ is linear on each fiber $L_{p}, p \in S^{1}$.
(b) Observe that F expresses L as a subbundle of the trivial bundle $S^{1} \times \mathbb{R}^{2} \rightarrow S^{1}$ of rank 2.
3. Let E_{k} be the k-twisted oriented \mathbb{R}^{2}-bundle over S^{2}. Prove: E_{k} and E_{-k} are isomorphic by an orientation-reversing bundle isomorphism over S^{2}.
4. Prove: $T S^{2}$ is isomorphic to E_{2} as oriented \mathbb{R}^{2}-bundles over S^{2}. (Note that the standard orientation of S^{2} induces an orientation on the fibers of $T S^{2}$).
5. The goal of this exercise is to construct Legendrian curves in S^{3} (useful for Serie 2, Exercise 5). Let S^{3} be the unit quaternions. Recall the left invariant vectorfields I, J, K on S^{3} defined by

$$
I(u):=u i, \quad J(u):=u j, \quad K(u):=u k, \quad u \in S^{3} .
$$

A curve γ in S^{3} is called Legendrian if $\dot{\gamma}(t)$ is a linear combination of J and K for each t.
(a) Find a family of helix-like Legendrian curves as follows. Let im (c) be the image of the great circle $c(\theta):=e^{i \theta}$ in S^{3}. For each $0<r<\pi / 2$, define the torus

$$
T_{r}:=\left\{u \mid \operatorname{dist}_{\mathrm{S}^{3}}(u, \operatorname{im}(c))=r\right\} .
$$

Observe that the vector field I is tangent to T_{r}. Now solve for the curves γ on T_{r} that are orthogonal to I at each point.
(b) For r very small, γ_{r} will lie very close to c, even though c has velocity vector I, yet γ_{r} is not allowed to go in the I-direction. Show that γ_{r} is much, much longer than c.
(c) Show that for any two points u, v in S^{3} there exists a piecewise smooth Legendrian curve connecting u to v. (Use the Legendrian helices. Another way is note that $[J, K](p)=I(p)$, and look at the relations between the flows of the two vectorifields.)

