Exercise Sheet 3

1. Let $f : (M^m, g) \to (N^n, h)$ be a smooth map, with $m \ge n$. Define $|Jf(x)| := \det(df(x) \circ df(x)^T)$. The coarea formula states that

$$\int_{M} u(x) |Jf(x)| \, d\mu_g(x) = \int_{N} \int_{f^{-1}(y)} u(z) \, d\mu_{g^y}(z) \, d\mu_h(y)$$

where g^y is the induced metric on $f^{-1}(y)$. (Note that by Sard's theorem and the submersion theorem, y is a regular value of f, and $f^{-1}(y)$ is a smooth submanifold of M of dimension m - n for μ_h -a.e. y in N, and we don't bother integrating over the measure-zero set of critical values. If you don't like this argument, only consider the case where f is a submersion.)

Now let f be a submersion. Decompose $T_pM = V_p \oplus H_p$, where $V_p := \ker(df_p)$ and $H_p := V_p^{\perp}$ are called the *vertical* and *horizontal* subspaces of T_pM with respect to f. We call f a *Riemannian submersion* if

$$df_p|H_p:H_p\to T_qN$$

is an isometry for all $p \in M$.

- (a) Show that the Hopf fibration $f: S^3 \to S^2$ is a Riemannian submersion, if we adjust the radius of S^2 appropriately. (*Hint:* Use a well-chosen frame.) What is this magic radius?
- (b) Use the co-area formula to compute $vol(S^3)$.
- **2.** Let $j : S^1 \to \mathbb{R}^2$ be the standard embedding. Let L be the twisted \mathbb{R} -bundle over S^1 (i.e. the Möbius strip). Let $\pi_i : \mathbb{R}^4 = \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$ be the projection onto the *i*-factor, i = 1, 2.
 - (a) Find an embedding $F : L \to \mathbb{R}^4$ such that $\pi_1 \circ F = j$ and $\pi_2 \circ F$ is linear on each fiber $L_p, p \in S^1$.
 - (b) Observe that F expresses L as a subbundle of the trivial bundle $S^1 \times \mathbb{R}^2 \to S^1$ of rank 2.
- **3.** Let E_k be the k-twisted oriented \mathbb{R}^2 -bundle over S^2 . Prove: E_k and E_{-k} are isomorphic by an orientation-reversing bundle isomorphism over S^2 .
- **4.** Prove: TS^2 is isomorphic to E_2 as oriented \mathbb{R}^2 -bundles over S^2 . (Note that the standard orientation of S^2 induces an orientation on the fibers of TS^2).

5. The goal of this exercise is to construct Legendrian curves in S^3 (useful for Serie 2, Exercise 5). Let S^3 be the unit quaternions. Recall the left invariant vectorfields I, J, K on S^3 defined by

$$I(u) := ui, \quad J(u) := uj, \quad K(u) := uk, \qquad u \in S^3.$$

A curve γ in S^3 is called *Legendrian* if $\dot{\gamma}(t)$ is a linear combination of J and K for each t.

(a) Find a family of helix-like Legendrian curves as follows. Let im(c) be the image of the great circle $c(\theta) := e^{i\theta}$ in S^3 . For each $0 < r < \pi/2$, define the torus

 $T_r := \{ u \mid \operatorname{dist}_{\mathrm{S}^3} (u, \operatorname{im}(c)) = r \}.$

Observe that the vector field I is tangent to T_r . Now solve for the curves γ on T_r that are orthogonal to I at each point.

- (b) For r very small, γ_r will lie very close to c, even though c has velocity vector I, yet γ_r is not allowed to go in the *I*-direction. Show that γ_r is much, much longer than c.
- (c) Show that for any two points u, v in S^3 there exists a piecewise smooth Legendrian curve connecting u to v. (Use the Legendrian helices. Another way is note that [J, K](p) = I(p), and look at the relations between the flows of the two vectorifields.)

Due on Friday March 20