Solutions of Exercise sheet 12

1. This is a linear algebra exercise. We can find the dimension as follows
(a) the first non trivial situation is when $R_{i j k l}$ looks like $R_{i j i j}$, in this case the dimension is $\binom{n}{2}$,
(b) the second case is when three indices are distinct and one is repeated, in this case the dimension is $3\binom{n}{3}$,
(c) the last case is when the four indices are distinc, in this case the dimesnion (by Bianchi's identity) is $2\binom{n}{4}$.

Hence the sum is given by $\frac{1}{12} n^{2}\left(n^{2}-1\right)$.
2. (a) $\frac{1}{12} n^{2}\left(n^{2}-1\right)=1$ for $n=1$.
(b) Let $A \in O\left(T_{p} M\right)$, let e_{1}, e_{2} be an orthonormal basis of $T_{p} M$ and let $K(p)$ be the sectional curvature at p. Then by multi-linearity

$$
R m\left(A\left(e_{1}\right), A\left(e_{2}\right), A\left(e_{1}\right), A\left(e_{2}\right)\right)=(\operatorname{det}(A))^{2} K(p)
$$

(c) By definition and b), for some orthonormal basis,

$$
R_{1212}=K(p)
$$

Using a), we get the result.
3. Since the hyperbolic space is a homogeneous space (as it is symmetric) and since all these tensors are isometry-invariant, we conclude that our result is independent of the point $p \in H^{n}$. On the other hand to compute the Riemann curvature tensor, we need to know our metric (in a Taylor expansion) only up to order 2 (Rm depends only on Christoffel symbols and their first derivatives.). Consider the disk model then its metric g can be approximated (via a Taylor expansion) at $p=(0, \ldots, 0)$ by

$$
g_{i j}=4 \delta_{i j}-8 x^{i} x^{j}+o\left(\|x\|^{3}\right) .
$$

Using this trick is it now easy to calculate the desired tensor at $(0, \ldots, 0)$. To check whether your calculations were correct, you have to find that all sectional curvatures are equal to -1 .
4. We start with some definitions first. For a vector field X on G we define $a d_{X}$: $C^{\infty}(T M) \rightarrow C^{\infty}(T M)$ via

$$
a d_{X}(Y):=[X, Y]
$$

In particular we are going to consider its restriction $a d_{X}: T_{e} G \rightarrow T_{e} G$. On the other hand we denote with $A D_{a}: G \rightarrow G$ the group automorphism sending $g \rightarrow a g a^{-1}$ and
with $A d(a): T_{e} G \rightarrow T_{e} G$, the map

$$
A d(a)(X)=d\left(A D_{a}\right)_{e}(X)
$$

(see exercise sheet 1 , exercise 5).
(a) B being bilinear follows from linearity of the objects in the definition. Next, we prove that B is $A d$-invariant, i.e $B(A d(a) X, A d(a) Y)=B(X, Y)$. First we prove that

$$
A d_{a} \circ a d_{X} \circ\left(A d_{a}\right)^{-1}=a d_{A d_{a} X}
$$

for any $a \in G, X \in T_{e} G$. Indeed

$$
\begin{aligned}
A d_{a} \circ a d_{X} \circ\left(A d_{a}\right)^{-1} y & =A d_{a}\left[X,\left(A d_{a}\right)^{-1} Y\right] \\
& =\left[A d_{a} X, A d_{a}\left(A d_{a}\right)^{-1} Y\right] \\
& =\left[A d_{a} X, Y\right] \\
& =a d_{A d_{a} X} Y .
\end{aligned}
$$

Then

$$
\begin{aligned}
B(A d(a) X, A d(a) Y) & =\operatorname{tr}\left(a d_{A d_{a} X} \circ a d_{A d_{a} Y}\right) \\
& =\operatorname{tr}\left(A d_{a} \circ a d_{X} \circ\left(A d_{a}\right)^{-1} \circ A d_{a} \circ a d_{Y} \circ\left(A d_{a}\right)^{-1}\right) \\
& =\operatorname{tr}\left(a d_{X} \circ a d_{Y}\right) \\
& =B(X, Y) .
\end{aligned}
$$

since $\operatorname{tr}(A B)=\operatorname{tr}(B A)$. (This last identity on the trace also tells you that B is symmetric.)
(b) Recall that any compact Lie group G carries a Haar measure μ with $\mu(G)=1$. Now choose a basis on $T_{e} G$ and let $\langle-,-\rangle$ be the inner product on $T_{e} G$ that makes the above basis orthonormal. In particular, μ can be used to put an $A d$ invariant inner product on $T_{e} G$ via

$$
h(X, Y):=\int_{G}\left\langle A d_{a} X, A d_{a} Y\right\rangle d \mu(a)
$$

If you extend this h as a left-invariant metric to G, then this extended metric will also be right-invariant. (This was already shown in the exercise 5 , exercise sheet 1). Now consider $O\left(T_{e} G\right) \subset G L\left(T_{e} G\right)$ with respect to the inner product h.
(i) Consider the Lie group homomorphism $A d_{(-)}: G \rightarrow G L\left(T_{e} G\right)$. Since h is $A d$ invariant we conclude that $A d_{a} \in O\left(T_{e} G\right)$ for any $a \in G$.
(ii) The differential of $A d_{(-)}$at the identity $e \in G$

$$
d\left(A d_{(-)}\right)_{e}: T_{e} G \rightarrow T_{I d} G L\left(T_{e} G\right)
$$

is given by $d\left(A d_{(-)}\right)_{e}(X)=a d_{X}$. Note that $T_{I d} G L\left(T_{e} G\right) \cong \mathbb{R}^{n^{2}}$.
(iii) By point (i) we have that $a d_{X}$ is contained in $T_{I d} O\left(T_{e} G\right)$. Now let γ be a path on $O\left(T_{e} G\right)$ starting at the identity. Let $A=\dot{\gamma}(0)$. Then for any $v, w \in T_{e} G$

$$
h(\dot{\gamma}(t) v, \dot{\gamma}(t) w)=h(v, w)
$$

for any t. Thus

$$
0=\left.\frac{d}{d t}\right|_{0} h(\dot{\gamma}(t), \dot{\gamma}(t))=h(A v, w)+h(v, A w) .
$$

Hence, $T_{I d} O\left(T_{e} G\right)$ may be identified with the space of matrices A that satisfy $h(A v, w)+h(v, A w)=0$.
(iv) If we take the complexification $\left(T_{e} G \otimes \mathbb{C}, h_{\mathbb{C}}\right)$ of the inner product space ($T_{e} G, h$) (i.e we extend h to an Hermitian inner product $h_{\mathbb{C}}$) we get that $A \in T_{I d} O\left(T_{e} G\right)$ can be extended as a Hermitian matrix on $\left(T_{e} G \otimes \mathbb{C}, h_{C}\right)$. Now by the spectral theorem A is diagonalizable. Let λ be an eigenvalue of A, then

$$
\begin{aligned}
\lambda h_{\mathbb{C}}(z, z) & =h_{\mathbb{C}}(A z, z) \\
& =-h_{\mathbb{C}}(z, A z) \\
& =-\bar{\lambda} h_{\mathbb{C}}(z, z)
\end{aligned}
$$

i.e its eigenvalues are purely imaginary.
(v) Since $a d_{X}$ is contained in $T_{I d} O\left(T_{e} G\right)$, we can consider it as a Hermitian matrix with purely imaginary eigenvalues. Therefore,

$$
B(X, X)=\operatorname{tr}\left(a d_{X} \circ a d_{X}\right)=\operatorname{tr}\left(A^{2}\right)=\sum \lambda^{2} \leqslant 0 .
$$

(c) By the above, $g=-B$ is a bi-invariant metric on $T_{e} G$ in case B is non-degenerate. This is exactly the case if G is semi-simple. (If you don't know this, simply take this as a definition or look it up in a Lie algebra textbook;)) Then give yourself an orthonormal left invariant basis e_{i} and some left-invariant vector fields X, Y. As the left-invariant vector fields e_{i} form a global frame, it is enough to prove the identity for left-invariant vector fields as $R c$ and g are tensors. Using exercise 2a) of exercise sheet 11 we have

$$
\begin{aligned}
R c(X, Y) & =\sum_{i=1}^{n} R m\left(X, e_{i}, Y, e_{i}\right) \\
& =\sum_{i=1}^{n} g\left(R\left(X, e_{i}\right) Y, e_{i}\right) \\
& =\frac{1}{4} \sum_{i=1}^{n} g\left(\left[\left[X, e_{i}\right] Y\right], e_{i}\right) \\
& =-\frac{1}{4} B(X, Y)=\frac{1}{4} g(X, Y)
\end{aligned}
$$

(d) We need that the Lie algebra is semi-simple, i.e it is the direct sum of simple Lie algebras. Do you know some examples/counter examples? ;)

Happy Holidays!

