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Solutions of Exercise sheet 12

1. This is a linear algebra exercise. We can find the dimension as follows

(a) the first non trivial situation is when Rijkl looks like Rijij , in this case the dimen-
sion is

`

n
2

˘

,

(b) the second case is when three indices are distinct and one is repeated, in this case
the dimension is 3

`

n
3

˘

,

(c) the last case is when the four indices are distinc, in this case the dimesnion (by
Bianchi’s identity) is 2

`

n
4

˘

.

Hence the sum is given by 1
12n

2
`

n2 ´ 1
˘

.

2. (a) 1
12n

2
`

n2 ´ 1
˘

“ 1 for n “ 1.

(b) Let A P OpTpMq, let e1, e2 be an orthonormal basis of TpM and let Kppq be the
sectional curvature at p. Then by multi-linearity

Rm pA pe1q , A pe2q , A pe1q , A pe2qq “ pdetpAqq2Kppq

(c) By definition and b), for some orthonormal basis,

R1212 “ Kppq

Using a), we get the result.

3. Since the hyperbolic space is a homogeneous space (as it is symmetric) and since all
these tensors are isometry-invariant, we conclude that our result is independent of the
point p P Hn. On the other hand to compute the Riemann curvature tensor, we need
to know our metric (in a Taylor expansion) only up to order 2 (Rm depends only
on Christoffel symbols and their first derivatives.). Consider the disk model then its
metric g can be approximated (via a Taylor expansion) at p “ p0, . . . , 0q by

gij “ 4δij ´ 8xixj ` op||x||3q.

Using this trick is it now easy to calculate the desired tensor at p0, . . . , 0q. To check
whether your calculations were correct, you have to find that all sectional curvatures
are equal to ´1.

4. We start with some definitions first. For a vector field X on G we define adX :
C8pTMq Ñ C8pTMq via

adXpY q :“ rX,Y s

In particular we are going to consider its restriction adX : TeGÑ TeG. On the other
hand we denote with ADa : GÑ G the group automorphism sending g Ñ aga´1 and

1



with Adpaq : TeGÑ TeG, the map

AdpaqpXq “ d pADaqe pXq.

(see exercise sheet 1, exercise 5).

(a) B being bilinear follows from linearity of the objects in the definition. Next, we
prove that B is Ad-invariant, i.e BpAdpaqX,AdpaqY q “ BpX,Y q. First we prove
that

Ada ˝ adX ˝ pAdaq
´1
“ adAdaX

for any a P G, X P TeG. Indeed

Ada ˝ adX ˝ pAdaq
´1 y “ Ada

”

X, pAdaq
´1 Y

ı

“

”

AdaX,Ada pAdaq
´1 Y

ı

“ rAdaX,Y s

“ adAdaXY.

Then

BpAdpaqX,AdpaqY q “ tr padAdaX ˝ adAdaY q

“ tr
´

Ada ˝ adX ˝ pAdaq
´1
˝Ada ˝ adY ˝ pAdaq

´1
¯

“ tr padX ˝ adY q

“ BpX,Y q.

since tr pABq “ tr pBAq. (This last identity on the trace also tells you that B is
symmetric.)

(b) Recall that any compact Lie group G carries a Haar measure µ with µpGq “ 1.
Now choose a basis on TeG and let x´,´y be the inner product on TeG that makes
the above basis orthonormal. In particular, µ can be used to put an Ad invariant
inner product on TeG via

hpX,Y q :“

ż

G
xAdaX,AdaY y dµpaq.

If you extend this h as a left-invariant metric to G, then this extended metric will
also be right-invariant. (This was already shown in the exercise 5, exercise sheet
1). Now consider OpTeGq Ă GLpTeGq with respect to the inner product h.

(i) Consider the Lie group homomorphism Adp´q : GÑ GLpTeGq. Since h is
Ad invariant we conclude that Ada P OpTeGq for any a P G.

(ii) The differential of Adp´q at the identity e P G

d
`

Adp´q
˘

e
: TeGÑ TIdGLpTeGq

is given by d
`

Adp´q
˘

e
pXq “ adX . Note that TIdGLpTeGq – Rn2

.

(iii) By point piq we have that adX is contained in TIdOpTeGq. Now let γ be
a path on OpTeGq starting at the identity. Let A “ 9γp0q. Then for any
v, w P TeG

hp 9γptqv, 9γptqwq “ hpv, wq
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for any t. Thus

0 “
d

dt
|0hp 9γptq, 9γptqq “ hpAv,wq ` hpv,Awq.

Hence, TIdOpTeGq may be identified with the space of matrices A that
satisfy hpAv,wq ` hpv,Awq “ 0.

(iv) If we take the complexification pTeGb C, hCq of the inner product space
pTeG, hq (i.e we extend h to an Hermitian inner product hC) we get that
A P TIdOpTeGq can be extended as a Hermitian matrix on pTeGb C, hCq.
Now by the spectral theorem A is diagonalizable. Let λ be an eigenvalue of
A, then

λhCpz, zq “ hCpAz, zq

“ ´hCpz,Azq

“ ´λ̄hCpz, zq

i.e its eigenvalues are purely imaginary.

(v) Since adX is contained in TIdOpTeGq, we can consider it as a Hermitian
matrix with purely imaginary eigenvalues. Therefore,

BpX,Xq “ tr padX ˝ adXq “ tr
`

A2
˘

“
ÿ

λ2 ď 0.

(c) By the above, g “ ´B is a bi-invariant metric on TeG in case B is non-degenerate.
This is exactly the case if G is semi-simple. (If you don’t know this, simply take
this as a definition or look it up in a Lie algebra textbook ;) ) Then give yourself
an orthonormal left invariant basis ei and some left-invariant vector fields X,Y .
As the left-invariant vector fields ei form a global frame, it is enough to prove the
identity for left-invariant vector fields as Rc and g are tensors. Using exercise 2a)
of exercise sheet 11 we have

RcpX,Y q “

n
ÿ

i“1

RmpX, ei, Y, eiq

“

n
ÿ

i“1

g pRpX, eiqY, eiq

“
1

4

n
ÿ

i“1

g prrX, eisY s , eiq

“ ´
1

4
BpX,Y q “

1

4
gpX,Y q

(d) We need that the Lie algebra is semi-simple, i.e it is the direct sum of simple Lie
algebras. Do you know some examples/counter examples? ;)

Happy Holidays!
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