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1. The twisting number is ´1.

2. (a) Recall that LXY “ rX,Y s. But the bracket isn’t linear over C8 pMq, i.e

rfX, Y s “ f rX,Y s ´ pY ¨ fqX.

Then L
p´q

p´q
“ r´,´s : TM ˆ TM Ñ TM is not an affine connection.

(b) Set Z :“ gpx, yq B
Bx , W :“ fpx, yq B
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Note that the first term vanish. So for example we can choose fpx, yq “ 1 and
gpx, yq “ y ` 1.

3. The fact that DF
X is a connection on the subbundle F is straightforward: since πF is a

bundle map then it is fiber wise linear, i.e for any smooth section V defined on U ĂM
and a smooth map f : U Ñ R we have

πF pf ¨ V q “ f ¨ πF pV q

DF
X satisfies the two linear condition, the Leibniz rule is obtained in a similar way.

Since πF is fiber wise orthogonal, we can decompose each fiber as the orthogonal sum

Ep “ Fp ‘ kerπF ppq

where πF ppq : Ep Ñ Fp is the orthogonal projection. Since all the data are smooth it
is easy shown by linear algebra that kerπF is another vector subbundle of E and there
is a bundle map

π2 : E Ñ kerπF

point wise defined as the projection in the second element in the above direct sum.
Next observe that we can consider a section of F (resp. kerπF ) as a section of E,
and that each section V on E decomposes to a section πF pV q on E and a section
π2pV q on kerπF . With these identifications in place, we can write the equation on
sectionsV of E, V “ π2pV q ` πF pV q. Note that a connection doesn’t preserves the
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orthogonal decomposition in general, i.e let V be a section of F Ă E and W a section
of kerπF Ă E. Then

0 “ X¨ ă V,W ąh“ă DXV,W ąh ` ă V,DXW ąh

but it is not true in general that ă DXV,W ą“ 0, i.e. DXV P F Ă E. By
the above discussion we know that for a section V on F Ă E we get two sections
πF pDXV q, π2pDXV q. Then for another section W of F we have

ă DXV,W ą“ă πF pDXV q ` π2pDXV q,W ąh“ă πF pDXV q,W ąh .

It follows that DF
X is compatible.

4. (a) By definition of V parallel section of E, we have for every vector field X P ΓpTMq,
that

DXV “ 0.

Thus from metric compatibility, we have:

X ¨ xV, V y “ 2xDXV, V y “ 0.

Now this then of course means x Ñ xV pxq, V pxqy is constant. (If you don’t see
this, go to local coordinates and see that this implies all the partial differentials
to be zero, and thus the conclusion, locally, but then implicitly, we assume all the
time, that the base manifold M is connected, otherwise, you have this function
constant on every connected component.)

(b) Let U ĂM sufficiently small such that there exist an orthonormal frame eα. Then
for any two section V , W there exists smooth function fα, gα on U such that

V “ fαeα, W “ gαeα

Since the connection is compatible we have have for any X P TM

X ă V,W ą“ă DXV,W ą ` ă V,DXW ą .

We show

X ă V,W ą“ă D0
XV,W ą ` ă V,D0

XW ą

Note that

ă V,W ą“ fαgα, ă D0
XV,W ą“ Xpfαqgα ,ă V,D0

XW ą“ fαXpgαq

So the above equation follow by the Leibniz rule for vectorfields.
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