Solution of Exercise sheet 5

1. (a) Let $U \subset M$ be open and let $X, Y \in C^{\infty}(U, T M), V, W \in C^{\infty}(U, E)$ then by a direct computation we have

$$
\Delta(X+Y, V)=\Delta(X, V)+\Delta(Y, V), \quad \Delta(X, W+V)=\Delta(X, W)+\Delta(X, V)
$$

Now let $f \in C^{\infty}(U)$, then

$$
\Delta(f X, V)=D_{f X^{2}} V-D_{f X^{1}} V=f D_{X}^{2} V-f D_{X}^{1} V=f \Delta(X, V)
$$

On the other hand

$$
\begin{aligned}
\Delta(X, f V) & =D_{X}^{2} f V-D_{X}^{1} f V \\
& =f D_{X}^{2} V+(X f) V-\left(f D_{X}^{1} V+(X f) V\right) \\
& =f \Delta(X, V)
\end{aligned}
$$

This show that $\Delta(X, V)$ is a bilinear map that is linear over $C^{\infty}(M)$.

Now it is a very important concept of differential geometry that $C^{\infty}(M)$ linear maps are 'tensors', i.e. they come from sections of certain tensor bundles. (in our case $T M^{*} \otimes E^{*} \otimes E=\operatorname{Bilin}(T M, E ; E)$.) To see this we will use two steps.
(i) Δ operates locally. That is, given $p \in M, U$ an open neighborhood of p , $\chi: M \rightarrow[0,1]$ a cut-off function such that $\operatorname{supp}(\chi) \subset U$ and $\chi(p)=1$ and $X, Y 2$ vector fields that agree on U, then we have

$$
\begin{aligned}
\Delta(X, V)(p)-\Delta(Y, V)(p) & =\chi(p)(\Delta(X, V)(p)-\Delta(Y, V)(p)) \\
& =(\chi(\Delta(X-Y, V)))(p)=(\Delta(\chi(X-Y), V))(p) \\
& =\Delta(0, V)(p)=0
\end{aligned}
$$

where we used $\chi(X-Y) \equiv 0$. The same trick can be applied to the second component.
(ii) Δ operates point wise. Take $U \subset M$ a common trivializing neighborhood around $p \in M$ for the vector bundles E and $T M$. Now we can take frames e_{1}, \ldots, e_{n} reps. f_{1}, \ldots, f_{m} for $\left.T M\right|_{U}$ resp. $\left.E\right|_{U}$. Let $\left.X\right|_{U}=\sum_{i} X^{i} e_{i}$ and $\left.V\right|_{U}=\sum_{j} V^{j} f_{j}$ be sections of the respective vector bundles over M. Up to
the abuse of notation, were we omit multiplying everything with χ, we get

$$
\begin{aligned}
\Delta(X, V)(p) & =\Delta\left(\sum_{i} X^{i} e_{i}, \sum_{j} V^{j} f_{j}\right)(p) \\
& =\left(\sum_{i, j} X^{i} V^{j} \Delta\left(e_{i}, f_{j}\right)\right)(p) \\
& =\sum_{i, j} X^{i}(p) V^{j}(p) \Delta\left(e_{i}, f_{j}\right)(p)=\sum_{i, j, k} X^{i}(p) V^{j}(p) D_{i, j}^{k}(p) f_{k}
\end{aligned}
$$

where $\Delta\left(e_{i}, f_{j}\right)(p):=D_{i, j}^{k}(p) f_{k}$ Thus we defined

$$
\Delta(p): T_{p} M \times E_{p} \rightarrow E_{p}
$$

which can be verified to be independent of the frame chosen. These $\Delta(p)$ also vary smoothly as the $D_{i, j}^{k}$ are smooth. Thus these form a section of $\operatorname{Bilin}(T M, E ; E)$.
(b) Let $\Delta(-,-)$ be a section of $\operatorname{Bilin}(T M, E ; E)$, i.e it is a smooth family of bilinear maps $\Delta_{p}(-,-): T_{p} M \times E_{p} \rightarrow E_{p}$. Then for any smooth functions f, g any two scalars

$$
\begin{aligned}
D_{f X+g Y}^{2} V & =D_{f X+g Y}^{1} V+\Delta(f X+g Y, V) \\
& =D_{f X}^{1} V+D_{g Y}^{1} V+\Delta(f X, V)+\Delta(g Y, V) \\
& =D_{f X}^{2} V+D_{g Y}^{2} V
\end{aligned}
$$

and analogously $D_{X}^{2}(a V+b W)=a D_{X}^{2}(V)+b D_{X}^{2}(W)$. The last remaining step is the Leibniz rule.

$$
\begin{aligned}
D_{X}^{2}(f V)=D_{X}^{1}(f V)+\Delta(X, f V) & =f D_{X}^{1} V+X(f) V+f \Delta(X, V) \\
& =f D_{X}^{2} V+X(f) V
\end{aligned}
$$

(c) This is a direct consequence of the two statements.
2. Let E be a vectorbundle on M. Consider the section V defined by

$$
V(p)=0 \text { for each } p \in M
$$

it is called the zero section. Is it easy show that the zero section is actually smooth section. Moreover, by linearity, is it necessarily parallel: for any connection D on E

$$
D_{X} V=D_{X} 0 V=0 D_{X} V=0
$$

Note that this is true for any vector bundle, so this section is also called the trivial parallel section. It isn't true that any bundle carries a non trivial parallel section. However this is true in the case of a trivial line bundle. Let E be a trivial line bundle, then it has an (ortho)normal frame given by the smooth map

$$
e: \underset{2}{M} \rightarrow E
$$

such that $e(p)$ is a basis for E_{p} (note that this is equivalent to say that $e(p)$ is never equal to 0). Now since D is compatible with $\langle-,-\rangle$ for any $\lambda \in \mathbb{R}$ we have

$$
\begin{aligned}
X\langle\lambda e, \lambda e\rangle & =2\left\langle D_{X} \lambda e, \lambda e\right\rangle \\
& =2 \lambda^{2}\left\langle D_{X} e, e\right\rangle
\end{aligned}
$$

We have two cases. Assume that $\lambda=0$, then λe is the zero section and thus is parallel. If $\lambda \neq 0$ we get $\langle\lambda e, \lambda e\rangle$ constant, so

$$
\left\langle D_{X} e, e\right\rangle=0
$$

which implies $D_{X} e=0$.
(a) Use the formula for the Christoffel symbols of the Levi-Civita connection seen in class and compute.
(b) $Y(t)=\left(f^{1}(t), f^{2}(t)\right)$ be the solution of

$$
\begin{equation*}
\frac{D}{d t} Y=0, \quad Y(0)=Y_{0} \tag{1}
\end{equation*}
$$

along γ. Note that Y is a section defined on the image of γ. Then the first component of equation (1) is given by

$$
\frac{d}{d t} f^{2}(t)+\sum_{i, j} \dot{\gamma}^{i}(t) f^{j}(t) \Gamma_{i, j}^{1}=0
$$

which reduces to

$$
\frac{d}{d t} f^{1}(t)-f^{2}(t)=0
$$

Analogously for the second component, we have

$$
\frac{d}{d t} f^{1}(t)+\sum_{i, j} \dot{\gamma}^{i}(t) f^{j}(t) \Gamma_{i, j}^{2}=0
$$

which gives

$$
\frac{d}{d t} f^{2}(t)+f^{1}(t)=0
$$

Since $\left(f^{1}(0), f^{2}(0)\right)=(1,0)$ we conclude that

$$
f^{1}(t)=\cos (t), \quad f^{2}(t)=\sin (t)
$$

(c) Follows from the above.
3. (a) Since E is a complex line bundle (over $M=\mathbb{R}^{2}$) the fiber wise multiplication by i induces a bundle map $m_{i}: E \rightarrow E$ sending (p, z) to $(p, i z)$.
On the other hand E may be identified as a \mathbb{R}^{2} bundle, we denote this bundle with $E_{\mathbb{R}}$. Analogously the multiplication with i may be identified with a bundle $\operatorname{map} m_{i}: E_{\mathbb{R}} \rightarrow E_{\mathbb{R}}$ such that $m_{i}^{2}=-i d_{E}$ and $\langle-,-\rangle$ induces a m_{i} invariant real inner product $\langle-,-\rangle_{\mathbb{R}}$ on each fiber of $E_{\mathbb{R}}$. Now since $M=\mathbb{R}^{2}$ is contractible we get that $E_{\mathbb{R}}$ is a trivial vector bundle, and in particular it carries a unit length section f_{1}. Now set $e_{1}:=f_{1}, f_{2}:=m_{i}\left(e_{1}\right)$. We have

$$
\left\langle f_{1}, f_{2}\right\rangle_{\mathbb{R}}=\left\langle e_{1}, m_{i}\left(e_{1}\right)\right\rangle_{\mathbb{R}}=\left\langle m_{i} e_{1},-\left(e_{1}\right)\right\rangle_{\mathbb{R}}=-\left\langle f_{1}, f_{2}\right\rangle_{\mathbb{R}}
$$

Thus $m_{i}\left(e_{1}\right)$ is orthogonal to e_{1}. By abuse of notation, the remaining part of the exercise we will denote m_{i} with $i, E_{\mathbb{R}}$ with E and $\langle-,-\rangle_{\mathbb{R}}$ with $\langle-,-\rangle$.
(b) By the above exercise we know that any connection D can be written as

$$
D=D^{0}+\Delta
$$

where D^{0} is take with respectt to e_{1}, e_{2}. Take $X \in \mathbb{C}^{\infty}(T M)$. Since D is compatible with the inner product, by exercise 4 of exercise sheet 4 , we have that the map

$$
\Delta_{X}(p): E_{p} \rightarrow E_{p}
$$

is anti-symmetric with respect to $\langle\cdot, \cdot\langle$. More precisely from

$$
\left\langle\Delta_{X} e_{1}, e_{1}\right\rangle+\left\langle e_{1}, \Delta_{X} e_{1}\right\rangle=0
$$

we have $\left\langle\Delta_{X} e_{1}, e_{1}\right\rangle=0$. Thus there exists a $\lambda_{X} \in C^{\infty}(M)$ such that

$$
\Delta_{X} e_{1}=-\lambda_{X} e_{2}=-i \lambda_{X} e_{1}
$$

On the other hand for e_{2} we have that there exists a $\mu_{X} \in C^{\infty}(M)$ such that

$$
\Delta_{X} e_{2}=-i \mu_{X} e_{2}
$$

Since

$$
\left\langle\Delta_{X} e_{1}, e_{2}\right\rangle+\left\langle e_{1}, \Delta_{X} e_{2}\right\rangle=0
$$

we have $\lambda_{X}=\mu_{X}$. Thus we can define

$$
\omega: C^{\infty}(T M) \rightarrow C^{\infty}(M): X \mapsto \lambda_{X}
$$

If $f, g \in C^{\infty}(M), V \in C^{\infty}(E)$ and $X, Y \in C^{\infty}(M)$ then

$$
\begin{aligned}
-i \lambda_{f X+g Y} V & =\Delta(f X+g Y, V)=f \Delta(X, V)+g \Delta(Y, V) \\
& =-i\left(f \lambda_{X}+g \lambda_{Y}\right) V
\end{aligned}
$$

As V is arbitrary, one deduces

$$
\lambda_{f X+g Y}=f \lambda_{X}+g \lambda_{Y}
$$

that is to say that ω is linear over $C^{\infty}(M)$ which as in the first exercise will lead to a section of a bundle, in this case $T M^{*}$.
(In plain English this would be ω eats vector and spits out a number.)
It follows that the multiplication $-i \omega(-): T_{p} M \times E_{p} \rightarrow E_{p}$ is a smooth family of bilinear maps and we conclude that the connection has the wanted form

$$
D^{0}-i \omega(-)
$$

(c) Since $D=D^{0}-i \omega$ we have two facts. Clearly

$$
D_{X}^{0} i V=i D_{X}^{0} V
$$

On the other hand note that

$$
-i \omega(X)\left(i e_{1}\right)=-i \omega(X) \cdot\left(i e_{1}\right)=i\left(-i \omega(X) \cdot\left(e_{1}\right)\right)
$$

and

$$
-i \omega(X)\left(i e_{2}\right)=-i \omega(X) \cdot\left(i e_{2}\right)=i\left(-i \omega(X) \cdot\left(e_{2}\right)\right)
$$

then $-i \omega(X)(i V)=i(-i \omega(X)(V))$.
(d) Let $X=\partial_{x}, Y=\partial_{y}$ be the standard frame on $T M$. It induces a dual standard frame on $T M^{*}$ which is denote by $d x$ and $d y$, i.e. if $X=X^{1} \partial_{x}+X^{2} \partial_{y}$ then $d x(X)=X^{1}$ and $d y(X)=X^{2}$.
Let $V=e^{i f} e_{1}, f \in C^{\infty}(M)$ be a section. Then

$$
\begin{aligned}
& D_{X}^{0} V=D^{0} e^{i f} e_{1} \\
&=i \partial_{x}(f) e^{i f} e_{1} \\
& D_{Y}^{0} V=D^{0} e^{i f} e_{1}=i \partial_{y}(f) e^{i f} e_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
& -i \omega\left(\partial_{x}\right) V=-i\left(\omega\left(\partial_{x}\right)\right) e^{i f} e_{1} \\
& -i \omega\left(\partial_{x}\right) V=-i\left(\omega\left(\partial_{y}\right)\right) e^{i f} e_{1}
\end{aligned}
$$

Thus V is parallel if and only if

$$
\begin{aligned}
\partial_{x}(f) & =\left(\omega\left(\partial_{x}\right)\right) \\
\partial_{y}(f) & =\left(\omega\left(\partial_{y}\right)\right)
\end{aligned}
$$

Let us now define the exterior derivative $d: C^{\infty}(M) \rightarrow C^{\infty}\left(T M^{*}\right)$ defined by

$$
d f=\partial_{x} f d x+\partial_{y} f d y
$$

Note that the above equalities can now be rewritten as

$$
d f=w
$$

(e) Let $V=f_{1} e_{1}+f_{2} e_{2}$. If V is parallel then

$$
\begin{array}{r}
\partial_{x} f_{1} e_{1}+\partial_{x} f_{2} e_{2}=a(x, y) f_{1} e_{2}+a(x, y) f_{2} e_{1} \\
\partial_{y} f_{1} e_{1}+\partial_{y} f_{2} e_{2}=b(x, y) f_{1} e_{2}+b(x, y) f_{2} e_{1}
\end{array}
$$

which is equivalent to

$$
\begin{aligned}
\partial_{x} f_{1} & =a(x, y) f_{2} \\
\partial_{y} f_{2} & =b(x, y) f_{1} \\
\partial_{x} f_{2} & =a(x, y) f_{1} \\
\partial_{y} f_{1} & =b(x, y) f_{2}
\end{aligned}
$$

By identifying mixed derivatives, we get

$$
\begin{aligned}
\partial_{y} a(x, y) f_{2} & =\partial_{x} b(x, y) f_{2} \\
\partial_{y} a(x, y) f_{1} & =\partial_{x} b(x, y) f_{1}
\end{aligned}
$$

and this gives the desired result as f_{1}, f_{2} are never both zero at any point as V has constant non zero norm at every point.
For the converse, we set $V=e^{i f} e_{1}$ and soon in the course (DeRahm cohomology in \mathbb{R}^{n}) you will see that the condition $d f=\omega$ can be met by some f as $M=\mathbb{R}^{2}$ and $d \omega:=\left(\partial_{y} a(x, y)-\partial_{x} b(x, y)\right) d x \wedge d y=0$.
4. (a) We can look at (N, h) as being a submanifold of M such that the metric g restricts to h on $T N \subset T M$. It can be shown that the normal bundle $(T N)^{\perp}$ is also a vector sub bundle of $\left.T M\right|_{N}$ as is $T N$ and from this decomposition

$$
\left.T M\right|_{N}=T N \oplus(T N)^{\perp}
$$

we also get an orthogonal projection $\pi:\left.T M\right|_{N} \rightarrow T N$. (If you don't feel comfortable with this, try to trivialize the $(T N)^{\perp}$ by using for example Gram-Schmidt)
(b) Metric compatibility was already shown in Exercise 3 of Exercise Sheet 4.
(c) We have two facts. First,

$$
[X, Y]=D_{X} Y-D_{Y} X
$$

and second,

$$
X, Y \in C^{\infty}(T N) \Rightarrow[X, Y] \in C^{\infty}(T N)
$$

Therefore,

$$
D_{X}^{\pi} Y-D_{Y}^{\pi} X=\pi\left(D_{X} Y-D_{Y} X\right)=\pi([X, Y])=[X, Y]
$$

for $X, Y \in C^{\infty}(T N)$.
(d) As the Levi-Civita connection is the unique torsion free and metric connection on $T N, D^{\pi}$ has to be the Levi-Civita connection.

