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1. (a) Let U Ă M be open and let X,Y P C8pU, TMq, V,W P C8pU,Eq then by a
direct computation we have

∆pX ` Y, V q “ ∆pX,V q `∆pY, V q, ∆pX,W ` V q “ ∆pX,W q `∆pX,V q

Now let f P C8pUq, then

∆pfX, V q “ DfX2V ´DfX1V “ fD2
XV ´ fD

1
XV “ f∆pX,V q.

On the other hand

∆pX, fV q “ D2
XfV ´D

1
XfV

“ fD2
XV ` pXfqV ´

`

fD1
XV ` pXfqV

˘

“ f∆pX,V q

This show that ∆pX,V q is a bilinear map that is linear over C8pMq.

Now it is a very important concept of differential geometry that C8pMq linear
maps are ’tensors’, i.e. they come from sections of certain tensor bundles. (in our
case TM˚ b E˚ b E “ BilinpTM,E;Eq.) To see this we will use two steps.

(i) ∆ operates locally. That is, given p P M , U an open neighborhood of p,
χ : M Ñ r0, 1s a cut-off function such that supppχq Ă U and χppq “ 1 and
X,Y 2 vector fields that agree on U , then we have

∆pX,V qppq ´∆pY, V qppq “ χppqp∆pX,V qppq ´∆pY, V qppqq

“ pχp∆pX ´ Y, V qqqppq “ p∆pχpX ´ Y q, V qqppq

“ ∆p0, V qppq “ 0

where we used χpX ´ Y q ” 0. The same trick can be applied to the second
component.

(ii) ∆ operates point wise. Take U Ă M a common trivializing neighborhood
around p P M for the vector bundles E and TM . Now we can take frames
e1, . . . , en reps. f1, . . . , fm for TM |U resp. E|U . Let X|U “

ř

iX
iei and

V |U “
ř

j V
jfj be sections of the respective vector bundles over M . Up to
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the abuse of notation, were we omit multiplying everything with χ, we get

∆pX,V qppq “ ∆p
ÿ

i

Xiei,
ÿ

j

V jfjqppq

“ p
ÿ

i,j

XiV j∆pei, fjqqppq

“
ÿ

i,j

XippqV jppq∆pei, fjqppq “
ÿ

i,j,k

XippqV jppqDk
i,jppqfk

where ∆pei, fjqppq :“ Dk
i,jppqfk Thus we defined

∆ppq : TpM ˆ Ep Ñ Ep

which can be verified to be independent of the frame chosen. These ∆ppq
also vary smoothly as the Dk

i,j are smooth. Thus these form a section of

Bilin pTM,E;Eq.

(b) Let ∆p´,´q be a section of Bilin pTM,E;Eq, i.e it is a smooth family of bilinear
maps ∆pp´,´q : TpM ˆ Ep Ñ Ep. Then for any smooth functions f, g any two
scalars

D2
fX`gY V “ D1

fX`gY V `∆pfX ` gY, V q

“ D1
fXV `D

1
gY V `∆pfX, V q `∆pgY, V q

“ D2
fXV `D

2
gY V,

and analogously D2
X paV ` bW q “ aD2

X pV q ` bD
2
X pW q. The last remaining step

is the Leibniz rule.

D2
X pfV q “ D1

X pfV q `∆pX, fV q “ fD1
XV `XpfqV ` f∆pX,V q

“ fD2
XV `XpfqV.

(c) This is a direct consequence of the two statements.

2. Let E be a vectorbundle on M . Consider the section V defined by

V ppq “ 0 for each p PM

it is called the zero section. Is it easy show that the zero section is actually smooth
section. Moreover, by linearity, is it necessarily parallel: for any connection D on E

DXV “ DX0V “ 0DXV “ 0

Note that this is true for any vector bundle, so this section is also called the trivial
parallel section. It isn’t true that any bundle carries a non trivial parallel section.
However this is true in the case of a trivial line bundle. Let E be a trivial line bundle,
then it has an (ortho)normal frame given by the smooth map

e : M Ñ E
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such that eppq is a basis for Ep (note that this is equivalent to say that eppq is never
equal to 0). Now since D is compatible with x´,´y for any λ P R we have

X xλe, λey “ 2 xDXλe, λey

“ 2λ2 xDXe, ey

We have two cases. Assume that λ “ 0, then λe is the zero section and thus is parallel.
If λ ‰ 0 we get xλe, λey constant, so

xDXe, ey “ 0

which implies DXe “ 0.

(a) Use the formula for the Christoffel symbols of the Levi-Civita connection seen in
class and compute.

(b) Y ptq “ pf1ptq, f2ptqq be the solution of

(1)
D

dt
Y “ 0, Y p0q “ Y0

along γ. Note that Y is a section defined on the image of γ. Then the first
component of equation (1) is given by

d

dt
f2ptq `

ÿ

i,j

9γiptqf jptqΓ1
i,j “ 0

which reduces to
d

dt
f1ptq ´ f2ptq “ 0.

Analogously for the second component, we have

d

dt
f1ptq `

ÿ

i,j

9γiptqf jptqΓ2
i,j “ 0

which gives
d

dt
f2ptq ` f1ptq “ 0.

Since pf1p0q, f2p0qq “ p1, 0q we conclude that

f1ptq “ cosptq, f2ptq “ sinptq

(c) Follows from the above.

3. (a) Since E is a complex line bundle (over M “ R2) the fiber wise multiplication by
i induces a bundle map mi : E Ñ E sending pp, zq to pp, izq.
On the other hand E may be identified as a R2 bundle, we denote this bundle
with ER. Analogously the multiplication with i may be identified with a bundle
map mi : ER Ñ ER such that m2

i “ ´idE and x´,´y induces a mi invariant real
inner product x´,´yR on each fiber of ER. Now since M “ R2 is contractible we
get that ER is a trivial vector bundle, and in particular it carries a unit length
section f1. Now set e1 :“ f1, f2 :“ mipe1q. We have

xf1, f2yR “ xe1,mipe1qyR “ xmie1,´pe1qyR “ ´xf1, f2yR .

Thus mipe1q is orthogonal to e1. By abuse of notation, the remaining part of the
exercise we will denote mi with i, ER with E and x´,´yR with x´,´y.
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(b) By the above exercise we know that any connection D can be written as

D “ D0 `∆

where D0 is take with respectt to e1, e2. Take X P C8pTMq. Since D is com-
patible with the inner product, by exercise 4 of exercise sheet 4, we have that the
map

∆Xppq : Ep Ñ Ep

is anti-symmetric with respect to x¨, ¨x. More precisely from

x∆Xe1, e1y ` xe1,∆Xe1y “ 0

we have x∆Xe1, e1y “ 0. Thus there exists a λX P C
8pMq such that

∆Xe1 “ ´λXe2 “ ´iλXe1.

On the other hand for e2 we have that there exists a µX P C
8pMq such that

∆Xe2 “ ´iµXe2.

Since

x∆Xe1, e2y ` xe1,∆Xe2y “ 0

we have λX “ µX . Thus we can define

ω : C8pTMq Ñ C8pMq : X ÞÑ λX

If f, g P C8pMq, V P C8pEq and X,Y P C8pMq then

´iλfX`gY V “ ∆pfX ` gY, V q “ f∆pX,V q ` g∆pY, V q

“ ´ipfλX ` gλY qV.

As V is arbitrary, one deduces

λfX`gY “ fλX ` gλY

that is to say that ω is linear over C8pMq which as in the first exercise will lead
to a section of a bundle, in this case TM˚.
(In plain English this would be ω eats vector and spits out a number.)
It follows that the multiplication ´iωp´q : TpM ˆ Ep Ñ Ep is a smooth family
of bilinear maps and we conclude that the connection has the wanted form

D0 ´ iωp´q.

(c) Since D “ D0 ´ iω we have two facts. Clearly

D0
XiV “ iD0

XV.

On the other hand note that

´iωpXqpie1q “ ´iωpXq ¨ pie1q “ i p´iωpXq ¨ pe1qq

and

´iωpXqpie2q “ ´iωpXq ¨ pie2q “ i p´iωpXq ¨ pe2qq

then ´iωpXqpiV q “ i p´iωpXqpV qq.
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(d) Let X “ Bx, Y “ By be the standard frame on TM . It induces a dual standard
frame on TM˚ which is denote by dx and dy, i.e. if X “ X1Bx ` X2By then
dxpXq “ X1 and dypXq “ X2.
Let V “ eife1, f P C

8 pMq be a section. Then

D0
XV “ D0eife1 “ iBx pfq e

ife1

D0
Y V “ D0eife1 “ iBy pfq e

ife1

and

´iω pBxqV “ ´i pω pBxqq e
ife1

´iω pBxqV “ ´i pω pByqq e
ife1

Thus V is parallel if and only if

Bx pfq “ pω pBxqq

By pfq “ pω pByqq

Let us now define the exterior derivative d : C8 pMq Ñ C8 pTM˚q defined by

df “ Bxfdx` Byfdy.

Note that the above equalities can now be rewritten as

df “ w

(e) Let V “ f1e1 ` f2e2. If V is parallel then

Bxf1e1 ` Bxf2e2 “ apx, yqf1e2 ` apx, yqf2e1

Byf1e1 ` Byf2e2 “ bpx, yqf1e2 ` bpx, yqf2e1

which is equivalent to

Bxf1 “ apx, yqf2

Byf2 “ bpx, yqf1

Bxf2 “ apx, yqf1

Byf1 “ bpx, yqf2

By identifying mixed derivatives, we get

Byapx, yqf2 “ Bxbpx, yqf2

Byapx, yqf1 “ Bxbpx, yqf1

and this gives the desired result as f1,f2 are never both zero at any point as V
has constant non zero norm at every point.
For the converse, we set V “ eife1 and soon in the course (DeRahm cohomology
in Rn) you will see that the condition df “ ω can be met by some f as M “ R2

and dω :“ pByapx, yq ´ Bxbpx, yqqdx^ dy “ 0.

4. (a) We can look at pN,hq as being a submanifold of M such that the metric g restricts
to h on TN Ă TM . It can be shown that the normal bundle pTNqK is also a
vector sub bundle of TM |N as is TN and from this decomposition

TM |N “ TN ‘ pTNqK
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we also get an orthogonal projection π : TM |N Ñ TN . (If you don’t feel comfort-
able with this, try to trivialize the pTNqK by using for example Gram-Schmidt)

(b) Metric compatibility was already shown in Exercise 3 of Exercise Sheet 4.

(c) We have two facts. First,

rX,Y s “ DXY ´DYX

and second,

X,Y P C8pTNq ñ rX,Y s P C8pTNq.

Therefore,

Dπ
XY ´D

π
YX “ π pDXY ´DYXq “ πprX,Y sq “ rX,Y s .

for X,Y P C8pTNq.

(d) As the Levi-Civita connection is the unique torsion free and metric connection on
TN , Dπ has to be the Levi-Civita connection.
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