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Tom Ilmanen

Solution of Exercise sheet 5

1. (a) Let U ¢ M be open and let X,Y € C*(U,TM), VW € C*(U,E) then by a
direct computation we have

AX+Y,V)=AX,V)+AY,V), AX,WV+V)=AX,W)+A(X,V)
Now let f e C*(U), then
A(fX,V)=Dsx2V — D1V = fDXV — fDXV = fA(X,V).
On the other hand

AX,fV) = D%fV —-DxfV
fDXV + (X f)V — (fDXV + (X f)V)
= fA(X,V)

This show that A(X, V) is a bilinear map that is linear over C*(M).

Now it is a very important concept of differential geometry that C* (M) linear
maps are 'tensors’, i.e. they come from sections of certain tensor bundles. (in our
case TM* ® E* ® E = Bilin(TM, E; E).) To see this we will use two steps.

(i) A operates locally. That is, given p € M, U an open neighborhood of p,
X : M — [0,1] a cut-off function such that supp(x) < U and x(p) = 1 and
X,Y 2 vector fields that agree on U, then we have

A(X,V)(p) =AY, V)(p) = x(P)(AX, V) (p) — A(Y,V)(p))

= (AKX =Y, V)))(p) = (AX(X =Y),V))(p)
= A0, V)(p) =0

where we used x(X —Y) = 0. The same trick can be applied to the second
component.

(ii) A operates point wise. Take U ¢ M a common trivializing neighborhood
around p € M for the vector bundles £ and T'M. Now we can take frames
€ly--y€n T€PS. f1,..., fm for TM|y resp. El|y. Let X|y = ZiXiei and
Vg = Zj ijj be sections of the respective vector bundles over M. Up to
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the abuse of notation, were we omit multiplying everything with x, we get
A(X,V)(p) = A X'es, Y VI ) (p)
i J
= ZXivwei,fj))(p)
- Z XV (0)A(es, £5)(p) = 3 X (p)V () DX ()

1,5,k

where A(e;, fi)(p) := Df’j (p) fr Thus we defined
A(p) : T,M x E, — E,

which can be verified to be independent of the frame chosen. These A(p)
also vary smoothly as the Df’j are smooth. Thus these form a section of

Bilin (TM, E; E).

(b) Let A(—,—) be a section of Bilin (T'M, E; E), i.e it is a smooth family of bilinear
maps Ap(—,—) : TyM x E, — E,. Then for any smooth functions f, g any two
scalars

DixigvV = Dixi vV +A(fX +gY,V)
= Dva + D! YV +A(fX,V) + A(gY, V)

and analogously D% (aV + bW) = aD% (V) + bD% (W). The last remaining step

is the Leibniz rule.
DX (fV) = DX (fV) + A(X, fV) DXV + X(f)V + fA(X,V)

= fD%¥V + X(f)V.

(c) This is a direct consequence of the two statements.
2. Let F be a vectorbundle on M. Consider the section V defined by
V(p) = 0 for each pe M

it is called the zero section. Is it easy show that the zero section is actually smooth
section. Moreover, by linearity, is it necessarily parallel: for any connection D on E

DxV =Dx0V =0DxV =0

Note that this is true for any vector bundle, so this section is also called the trivial
parallel section. It isn’t true that any bundle carries a non trivial parallel section.
However this is true in the case of a trivial line bundle. Let F be a trivial line bundle,
then it has an (ortho)normal frame given by the smooth map

e : M —-F
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3.

such that e(p) is a basis for £, (note that this is equivalent to say that e(p) is never
equal to 0). Now since D is compatible with (—, —) for any A € R we have

X e, Ae)y = 2(DxAe, ey

= 2X%2(Dxe,e)
We have two cases. Assume that A = 0, then e is the zero section and thus is parallel.
If A # 0 we get (e, Ae) constant, so
(Dxe,ey =0

which implies Dxe = 0.

(a) Use the formula for the Christoffel symbols of the Levi-Civita connection seen in
class and compute.

(b) Y(t) = (f1(t), f2(t)) be the solution of
D

Zy -0, Y(0)=Y
dt 0, Y(0)=Yo

along v. Note that Y is a section defined on the image of . Then the first
component of equation (1) is given by

&P+ YO Or, =0
i,J

which reduces to
a frt) = () =0
dt '

Analogously for the second component, we have
d » .
afl(t) + Z'Yl@f] (63, =0
1/7]

which gives
9P+ i =0
Since (f1(0), 2(0)) = (1,0) we conclude that
FL(E) = cos(t),  f2(t) = sin(2)

(c) Follows from the above.

(a) Since E is a complex line bundle (over M = R?) the fiber wise multiplication by
i induces a bundle map m; : E — E sending (p, z) to (p,iz).
On the other hand E may be identified as a R? bundle, we denote this bundle
with Eg. Analogously the multiplication with ¢ may be identified with a bundle
map m; : Er — Eg such that mf = —idp and (—, —) induces a m; invariant real
inner product (—, —)p on each fiber of Eg. Now since M = R? is contractible we
get that Eg is a trivial vector bundle, and in particular it carries a unit length
section fi. Now set e; := f1, fo := m;(e1). We have

(frs foor = Cer,mi(e1))g = (mier, —(e1))g = — {f1, fo)g -

Thus m;(e1) is orthogonal to e;. By abuse of notation, the remaining part of the
exercise we will denote m; with ¢, Eg with E and (—, —)p with (-, —).
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(b) By the above exercise we know that any connection D can be written as
D=D"+A

where DY is take with respectt to e1, ea. Take X € C*(TM). Since D is com-
patible with the inner product, by exercise 4 of exercise sheet 4, we have that the
map

Ax(p) : Ep = Ep
is anti-symmetric with respect to (-, -(. More precisely from
(Axeq,er)+ (e, Axer) =0
we have (Axej,e;) = 0. Thus there exists a Ax € C® (M) such that
Axel S5 —)\Xez S5 —i)\Xel.
On the other hand for es we have that there exists a ux € C*(M) such that
Axeg = —i/LXeg.
Since
(Axeq,ez)+{(e1,Axez) =0
we have Ay = pux. Thus we can define
w:CP(TM)—C*®(M): X — A\x
If f,ge C*(M),V e C*(F) and X,Y € C®(M) then
CidpxegyV = AFX + Y, V) = FA(X, V) + gA(Y, V)
= —i(fAx + g\y)V.
As V is arbitrary, one deduces
Afx+gy = fAx + gy

that is to say that w is linear over C*° (M) which as in the first exercise will lead
to a section of a bundle, in this case T'M*.

(In plain English this would be w eats vector and spits out a number.)

It follows that the multiplication —iw(—) : T,M x E, — E, is a smooth family
of bilinear maps and we conclude that the connection has the wanted form

DY —iw(—).

(c) Since D = D° — iw we have two facts. Clearly
D%V = iD% V.
On the other hand note that
—iw(X)(ie1) = —iw(X) - (ie1) = i (—iw(X) - (e1))
and
—iw(X)(ie2) = —iw(X) - (iez) = i (—iw(X) - (e2))
then —iw(X)(EV) =i (—iw(X)(V)i.



(d)

Let X = 0,,Y = 0, be the standard frame on T'M. It induces a dual standard
frame on TM* which is denote by dx and dy, i.e. if X = X0, + X26y then
dr(X) = X! and dy(X) = X2

Let V = eifey, f € C® (M) be a section. Then

D%V = D% ey = io, (f) e ey
Dg/V = D% e, = iy (f)e ifeq
and
—iw (0,)V = —i (w(dy)) e e
—iw (0)V = —i (w(9y)) e’ ey
Thus V is parallel if and only if
0z (f) = (w (02))
0y (f) = (w(dy))
Let us now define the exterior derivative d : C* (M) — C® (T'M*) defined by
df = 0y fdx + 0y fdy.
Note that the above equalities can now be rewritten as

df =w

Let V = fie; + faeo. If V is parallel then

axflel + axf262 = a(m)y)flez + a(x,y)fzel
dyfier + Oy faez = b(x,y) frea + b(x, y) fae1

which is equivalent to

Oxf1 = alz,y)f2
any - b(a:, y)
Oxf2 = a(z,y) 1
ayfl - b(:x, y)

By identifying mixed derivatives, we get

aya(‘r?y)f? = axb(xay)fé
dya(z,y) f1 = 0zb(z,y) f1

and this gives the desired result as f1,fo are never both zero at any point as V'
has constant non zero norm at every point.

For the converse, we set V' = ¢/e; and soon in the course (DeRahm cohomology
in R™) you will see that the condition df = w can be met by some f as M = R?
and dw := (dya(z,y) — dub(z,y))dx A dy = 0.

We can look at (IV, h) as being a submanifold of M such that the metric g restricts
to h on TN < TM. Tt can be shown that the normal bundle (TN)* is also a
vector sub bundle of TM|y as is TN and from this decomposition

TM|y = TN @ (TN)*
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we also get an orthogonal projection 7 : TM |y — T'N. (If you don’t feel comfort-
able with this, try to trivialize the (T'N)* by using for example Gram-Schmidt)

(b) Metric compatibility was already shown in Exercise 3 of Exercise Sheet 4.
(c) We have two facts. First,
[X,Y]=DxY — DyX
and second,
X,Y € C®(TN) = [X,Y] € C°(TN).
Therefore,
DLY — DIX = n(DxY — Dy X) = n([X,Y]) = [X,Y].
for X,Y € C*(TN).

d) As the Levi-Civita connection is the unique torsion free and metric connection on
q
TN, D™ has to be the Levi-Civita connection.



