Supplementary Exercises

1. (a) Let \mathbb{B}^{2} be the Poincare disk model. Show that the diameter $\gamma(t):=t$ minimize the distance between any two points on x, y and is there fore a geodesic.
(b) Parametrize γ by arclenght.
2. Let E be a vector bundle over a manifold M.
(a) Let $\gamma:[0,1] \rightarrow M$ be a colosed curve. Define what it means for γ to be orientation persevering, (resp. orientation-reversing) for E.
(b) Show that the property of being orientation-persevering (resp. orientation-reversing for E) is invariant under the homotopy class of γ.
(c) Define

$$
w_{1}^{E}: \pi_{1}(M, p) \rightarrow \mathbb{Z}_{2}
$$

via

$$
w_{1}^{E}([\gamma]):= \begin{cases}0 & \text { if } \gamma \text { is orientation-persevering } \\ 1 & \text { otherwise }\end{cases}
$$

Observe that w_{1}^{E} is a group homomorphism.
(d) Show that E is orientable if and only if $w_{1}^{E} \equiv 0 . w_{1}^{E}$ is called the first Stiefel class of E.
3. Define the oriented 2-plane bundle E_{k} over S^{2} by gluing $B_{1} \times \mathbb{R}^{2}$ to $B_{1} \times \mathbb{R}^{2}$ via the map

$$
\begin{array}{rll}
\phi_{k}: & \partial B_{1} \times \mathbb{R}^{2} & \rightarrow \partial B_{1} \times \mathbb{R}^{2} \\
& \left(e^{i \theta},(x, y)\right) & \mapsto\left(e^{-i \theta}, R_{-k \theta}(x, y)\right)
\end{array}
$$

where $R_{-k \theta}$ is rotation by $-k \theta$, and endowing the result with the obvious orientation.
(a) Show that any \mathbb{R}^{2} bundle over S^{2} is isomorphic to E_{k} for some k.
(b) Prove that E_{k} and E_{l} are isomorphic as oriented 2-plane bundles only if $k=l$.

Hint: you may use the theorem that any bundle over a contractible space is trivial.
4. Let $\left(S^{2}, g\right)$ be the standard sphere
(a) Compute g in polar coordinate.
(b) Compute the Christoffel symbols in polar coordinates.
(c) Prove that the lines of longitude and the equator are geodesic via b).
5. This exercise is useful for Exercise 1 of Exercise Sheet 7. Let G be a Lie group, $X \in T_{e} G$. Denote with X^{L} the left-invariant extension of X and with X^{R} the right invariant extension of X. Prove
(a) $\phi_{t}^{X^{L}}(e)=\phi_{t}^{X^{R}}(e)$ for $t \in \mathbb{R}$, where ϕ^{W} is the flow of W.
(b) Let $\exp (t X):=\phi_{1}^{X^{L}}(e)=\phi_{1}^{X^{R}}(e)$. Then $\exp ((-) X): \mathbb{R} \rightarrow G$ is a group homomorphism called 1-parameter subgroup.
(c) $\phi_{t}^{X^{R}}=L_{\exp (t X)}$, i.e. the left multiplication by $\exp (t X)$ is the flow of X^{R}.
6. Let $B_{\epsilon}(p)$ be a geodesic ball in a Riemannian manifold, $\mathrm{d}(q):=\operatorname{dist}(p, q)$
(a) Observe that $\mathrm{d}^{2}: B_{\epsilon}(p) \rightarrow \mathbb{R}$ is smooth for ϵ small enough.
(b) Show that for a unit speed geodesic γ in $B_{\epsilon}(p), \epsilon$ small enough,

$$
\frac{d^{2}}{d t^{2}} \mathrm{~d}(\gamma(t))^{2}=2+h_{\gamma(t)}
$$

where $\left|h_{\gamma(t)}\right| \leqslant C \mathrm{~d}(\gamma(t))^{2}$ for some C independent of γ.

