Exercise sheet 3

Exercise 3.1 In Example 1.63 we used the fact that for $F \in L^{1}([0,1])$, then

$$
F_{n}:=\left(F^{+} \wedge n\right) I_{\left[\frac{1}{n}, 1\right]}-F^{-} \underset{n \rightarrow \infty}{\longrightarrow} F .
$$

Prove that this is indeed true.
Exercise 3.2 Consider a market where the risky asset evolves as in the tree below and the risk-free interest rate is $r=0 \%$.

Find a strategy which replicates the payoff of a call option with strike 90.
Exercise 3.3 Consider a general multi-period market and denote by $C(t, K)$ the payoff $\left(S_{t}^{1}-K\right)^{+}$at time t. Call t the maturity of the option. Assume that these options are traded, that $r \geq 0$, and that the market is free of arbitrage.

Fix K and show that the price of such call options is non-decreasing as a function of maturity.

Exercise 3.4 The binomial market from above can be extended to any arbitrary number of periods T by settings

$$
S_{t}^{0}=(1+r)^{t}
$$

and defining the risky asset with initial price 1 by its returns

$$
R_{t}:=\frac{S_{t}-S_{t-1}}{S_{t-1}}
$$

which are assumed to only take two values a, b with

$$
-1<a<b
$$

in each period. For further details on the construction of such a model, see Chapter 5.5. Assume that the market is free of arbitrage.

Let H be a contingent claim of the form $H=h\left(S_{T}^{1}\right)$. The (undiscounted) arbitrage free price of such a claim at time k can then be written as $V_{k}^{H}=$ $v\left(k, S_{k}^{1}\right)$. It can be shown that the function $v\left(k, S_{k}^{1}\right)$ fulfills the following backward recursion formula:

$$
\begin{equation*}
v(k, x)=\frac{q v(k+1, x(1+b))+(1-q) v(k+1, x(1+a))}{1+r} \tag{1}
\end{equation*}
$$

where

$$
q:=\frac{r-a}{b-a}
$$

and

$$
v(T, x)=h(x)
$$

(a) Using the above formula, derive an explicit formula for the replicating portfolio as a function of S^{1}, i.e., $\xi_{t}^{1}=f\left(t, S_{t-1}^{1}\right)$.
(b) Implement (1) in a computer to see how the price changes with maturity and compare to Exercise 3.3. The parameters chosen do not matter as long as $-1<a<r<b$.
One example would be $S_{0}^{1}=100, a=0.2, b=-0.1, r=0.05, K=110$, $H=\left(S_{T}^{1}-K\right)^{+}$, and T up to 100 .

