ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Urs Lang	Alexandru Sava	April 20, 2015

Exercise Sheet 4

Exercise 1

Let $F: V^4 \to \mathbb{R}$ be a 4-linear function on a vector space V with the same symmetry properties as $(X, Y, Z, W) \mapsto \langle [[X, Y], Z], W \rangle$, for a symmetric bilinear form $\langle \cdot, \cdot \rangle$ and a Lie bracket $[\cdot, \cdot]$. Show that if F(X, Y, X, Y) = 0 for all $X, Y \in V$, then $F \equiv 0$.

[We used this in the proof of Theorem 1.25. Compare Helgason, Ch. I, Lemma 12.4.]

Exercise 2

Let \mathfrak{g} be Lie algebra (finite-dimensional, over \mathbb{R}), and let $s \subset g$ be a Lie triple system. Show that [s, s] and [s, s] + s are subalgebras of g.

Exercise 3

Determine the flats in $G_{pq}^* = O(p,q)^0 / (SO(p) \times SO(q))$ and show that the rank of G_{pq}^* equals min $\{p,q\}$.

[Compare Exercise 1, Sheet 2.]

Exercise 4

(Iwasawa decomposition of GL(n, R)) Show that every $g \in GL(n, R)$ has a unique decomposition g = kan where $k \in O(n)$, a is a diagonal matrix with positive entries, and n is upper triangular with 1's on the diagonal.