ETH Zürich	D-MATH	Symmetric Spaces
Prof. Dr. Urs Lang	Alexandru Sava	April 20, 2015

Exercise Sheet 4

Exercise 1

Let $F: V^{4} \rightarrow \mathbb{R}$ be a 4-linear function on a vector space V with the same symmetry properties as $(X, Y, Z, W) \mapsto\langle[[X, Y], Z], W\rangle$, for a symmetric bilinear form $\langle\cdot, \cdot\rangle$ and a Lie bracket $[\cdot, \cdot]$. Show that if $F(X, Y, X, Y)=0$ for all $X, Y \in V$, then $F \equiv 0$.
[We used this in the proof of Theorem 1.25. Compare Helgason, Ch. I, Lemma 12.4.]

Exercise 2

Let \mathfrak{g} be Lie algebra (finite-dimensional, over \mathbb{R}), and let $s \subset g$ be a Lie triple system. Show that $[s, s]$ and $[s, s]+s$ are subalgebras of g.

Exercise 3

Determine the flats in $G_{p q}^{*}=O(p, q)^{0} /(S O(p) \times S O(q))$ and show that the rank of $G_{p q}^{*}$ equals $\min \{p, q\}$.
[Compare Exercise 1, Sheet 2.]

Exercise 4

(Iwasawa decomposition of $G L(n, R)$) Show that every $g \in G L(n, R)$ has a unique decomposition $g=k a n$ where $k \in O(n), a$ is a diagonal matrix with positive entries, and n is upper triangular with 1 's on the diagonal.

