

ETH

Serie 12

May 25th, 2015

- Q1. We toss 100 times a coin and we get 60 head. We want to do a test to know whether the coin is fair.
 - (a) Test the hypothesis with a 0.01 level of significance. Should this test be one or twotailed?.
 - (b) What is the biggest amount of head should we have in 100 tossings so we cannot discard $H_0 :=$ "The coin biased towards tail".
 - (c) Calculate all p_0 so that the null hypothesis

$$H_0(p_0) :=$$
 "Probability of head is p_0 ",

would not be rejected in a test with 0.05 level of significance. **Hint:** It will be useful to use the central limit theorem in all of this question.

Solution

Let $(X_i)_{i=1}^n$ an i.i.d sequence of Bernoulli(p). Let $X = \sum_{i=1}^{100} X_i$, then $X \sim Bin(100, p)$.

(a) We want to know whether the coin is fair or not, so our hypothesis are

 H_0 : The coin is fair, H_1 : The coin is not fair.

That is to say

$$H_0: p = p_0 = \frac{1}{2},$$

 $H_1: p \neq p_0.$

Then we should o a two-tailed test.

Under H_0 we have that $\mathbb{E}_0(X) = 50$ and $Var_0(X) = np_0(1-p_0) = 25$. Now, take c_1 and c_2 such that

$$0.01 \ge \mathbb{P}_0(X \notin (c_1, c_2))$$

= $1 - \mathbb{P}_0\left(\frac{c_1 - 50}{5} \le \frac{X - 50}{5} \le \frac{c_1 - 50}{5}\right)$
 $\sim 1 - \phi\left(\frac{c_2 - 50}{5}\right) + \phi\left(\frac{c_1 - 50}{5}\right).$

We would like to make the rejection zone as biggest as we can, given that ϕ is symmetric, we just have to make

$$\frac{c_1 - 50}{5} = -\frac{c_2 - 50}{5},$$
$$\Rightarrow c_1 = 100 - c_2.$$

Finally

$$0.01 \ge 1 - \phi\left(\frac{c_2 - 50}{5}\right) + 1 - \phi\left(\frac{c_2 - 50}{5}\right),$$
$$\Leftarrow \phi\left(\frac{c_2 - 50}{5}\right) \ge 0.995$$
$$\Leftarrow c_2 \ge 62.9,$$

then

$$K_{1\%} = [0, 37] \cup [63, 100]$$

Given that $60 \notin K_{1\%}$ we cannot reject H_0 with 0.01 level of significance.

(b) We have to take our hypothesis

$$H_0: p \le p_0 = \frac{1}{2}$$

 $H_1: p > p_0,$

now we have to find c such that

$$0.01 \ge \mathbb{P}_0(X \ge c) \sim 1 - \phi\left(\frac{c - 50}{5}\right).$$

Then we have to choose $c \ge 61.5$, from what we have that $K_{1\%} = [62, 100]$. So we reject H_0 if we have 62 or more heads.

(c) Take $p_0 \in (0, 1)$ and

$$H_0: p = p_0,$$

$$H_1: p \neq p_0.$$

Note that $\mathbb{E}_0(X) = 100p_0$ and $Var_0(X) = 100p_0(1-p_0)$. Then, take c_1 and c_2 such that

$$0.01 \ge \mathbb{P}_0(X \notin (c_1, c_2))$$

= $1 - \mathbb{P}_0\left(\frac{c_1 - 100p_0}{10\sqrt{p_0(1 - p_0)}} \le \frac{X - 100p_0}{10\sqrt{p_0(1 - p_0)}} \le \frac{c_1 - 100p_0}{10\sqrt{p_0(1 - p_0)}}\right)$
~ $1 - \phi\left(\frac{c_2 - 100p_0}{10\sqrt{p_0(1 - p_0)}}\right) + \phi\left(\frac{c_1 - 100p_0}{10\sqrt{p_0(1 - p_0)}}\right).$

Doing the same that in question a we have that $c_1(p_0) = 100p_0 - 19.6\sqrt{p_0(1-p_0)}$ and $c_2(p_0) = 100p_0 + 19.6\sqrt{p_0(1-p_0)}$. Then we are interested in the set

$$\left\{p: 100p - 19.6\sqrt{p(1-p)} \le 60 \le 100p + 19.6\sqrt{p(1-p)}\right\}$$
$$= \left\{p: 19.6^2p(1-p) \le (60 - 100p)^2 \le 19.6^2p(1-p)\right\} = [0.502, 0.691].$$

Q2. Consider the null hypothesis $X \sim f(x)dx$ and the alternative $X \sim f(x-1)dx$ for the following cases:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},$$

$$f(x) = \frac{1}{\pi(1+x^2)}.$$

Compute the form of the rejection of the likelihood area ratio test (Neyman-Pearson Lemma). Comment the difference

Solution:

Using the Neyman-Pearson test with the hypothesis

$$H_0: X \sim f(x)dx, H_1: X \sim f(x-1)dx.$$

We have that the likelihood ratio is given by

$$L = \frac{f(x-1)}{f(x)}$$

then in the case of the normal variable $L = e^{x-\frac{1}{2}}$, and we have rejection when L > c, i.e. $x > \ln c + \frac{1}{2}$. Then the rejection set is of the form (a, ∞) .

Figure 1: Rejections sets of the normal case.

In the case of the Cauchy random variable the likelihood ration is given by $L = \frac{x^2+1}{x^2-2x+2}$, then we have an interesting behavior as you can see in figure 2. If you put c = 1 then you will have a non bounded interval, but if you put c > 1 you will have a bounded interval.

This happens because the Cauchy distribution is heavy tailed.

Figure 2: Rejections sets of the cauchy case.

Q3. Let $(X_i)_{i=1}^n$ be an i.i.d F-distributed sequence. Let F be absolutely continuous. The Sign test is a test where the null hypothesis is that the median of X is m, i.e.

$$F^{-1}(m) = \frac{1}{2}$$

Use the Theorem 6.4 of the Skript to construct the test with significance level $\alpha = 0.05$. Solution:

We have to construct the test between the hypothesis:

$$H_0: F^{-1}(0.5) = m,$$

 $H_1: F^{-1}(0.5) \neq m.$

We will use the statistic $T_{n,m} = \sum_{i=1}^m \mathbf{1}_{\{X_n \le m\}}$ and the test is going to be given by

$$\phi(x) = 1 \Leftrightarrow \left| T_{n,m} - \frac{n}{2} \right| > c(n,\alpha),$$

where $x = (x_i)_{i=1}^n$, *n* is the size of the experiment and α is the level of the test. We have that under $H_0 T_{n,m}$ follows a law of $Bin(n, \frac{1}{2})$. Then if we define $k = \frac{n}{2} - c(n, \alpha)$, we should have, thanks to the symmetry of the Binomial:

$$\sum_{j=0}^{k-1} \binom{n}{j} 0.5^n \le \frac{\alpha}{2} < \sum_{j=0}^k \binom{n}{j} 0.5^n,$$

and $\frac{n}{2} + c(n, \alpha) = n - k$. Take $C \subseteq \mathbb{R}^{n+1}$

$$C := \left\{ (x_1, ..., x_n, m) : k \le \sum_{i=1}^n \mathbf{1}_{\{x_i \ge m\}} < n - k \right\},\$$

then we would like $B((x_1, ..., x_n)) = \{m : (x_1, ..., x_n, m) \in C\}$ to be a confidence interval of level α of $F(\frac{1}{2})$. Note that

$$m \in [x_{(j)}, x_{(j+1)}) \Leftrightarrow \sum_{i=1}^{n} \mathbf{1}_{\{x_i > m\}} = j$$

then $B((x_1, ..., x_n)) = [x_{(k)}, x_{(n-k)}]$. Thanks to the central limit theorem

$$\mathbb{P}_m\left(k \le \sum_{i=1}^n \mathbf{1}_{\{x_i > m\}} \le n - k\right) = \mathbb{P}_m\left(\frac{2}{\sqrt{n}}\left(k - \frac{n}{2}\right) \le \frac{2}{\sqrt{n}}\left(\sum_{i=1}^n \mathbf{1}_{\{x_i > m\}} - \frac{n}{2}\right) \le \frac{2}{\sqrt{n}}\left(\frac{n}{2} - k\right)\right)$$
$$\approx \phi\left(\frac{2}{\sqrt{n}}\left(\frac{n}{2} - k\right)\right) - \phi\left(\frac{2}{\sqrt{n}}\left(k - \frac{n}{2}\right)\right)$$
$$= 2\phi\left(\frac{2}{\sqrt{n}}\left(\frac{n}{2} - k\right)\right) - 1.$$

We want it to be bigger than 0.95, so $k \approx \frac{n}{2} - \frac{1.96}{2}\sqrt{n} \approx \lfloor \frac{n}{2} \rfloor - \sqrt{n}$. Then

$$B((x_1,...,x_n)) = \left[x_{(\lfloor \frac{n}{2} \rfloor - \sqrt{n})}, x_{(\lfloor \frac{n}{2} \rfloor + \sqrt{n})}\right],$$

is a confidence interval with 95% of confidence level. Then using the same notation as in Theorem 6.4 we have that

$$C := \{(x, B(x))\}$$

= $\{(x, m) : m \in \left[x_{(\lfloor \frac{n}{2} \rfloor - \sqrt{n})}, x_{(\lfloor \frac{n}{2} \rfloor + \sqrt{n})}\right]\}.$

Then $A(m) = \{x \in \mathbb{R}^n : \theta \in \left[x_{(\lfloor \frac{n}{2} \rfloor - \sqrt{n})}, x_{(\lfloor \frac{n}{2} \rfloor + \sqrt{n})}\right]\}$, so thanks to the Theorem 6.4 a test to the level 0.95 is given by $\varphi_m(x) = \mathbf{1}_{\left\{x_{(\lfloor \frac{n}{2} \rfloor - \sqrt{n})} \le m \le x_{(\lfloor \frac{n}{2} \rfloor + \sqrt{n})}\right\}}$.