Lecturer: Prof. Dr. Sara van de Geer

Prof. Dr. Martin Larsson

Serie 12

May 25th, 2015
Q1. We toss 100 times a coin and we get 60 head. We want to do a test to know whether the coin is fair.
(a) Test the hypothesis with a 0.01 level of significance. Should this test be one or twotailed?.
(b) What is the biggest amount of head should we have in 100 tossings so we cannot discard $H_{0}:=$ "The coin biased towards tail".
(c) Calculate all p_{0} so that the null hypothesis

$$
H_{0}\left(p_{0}\right):=\text { "Probability of head is } p_{0} ",
$$

would not be rejected in a test with 0.05 level of significance.
Hint: It will be useful to use the central limit theorem in all of this question.

Solution

Let $\left(X_{i}\right)_{i=1}^{n}$ an i.i.d sequence of $\operatorname{Bernoulli}(p)$. Let $X=\sum_{i=1}^{100} X_{i}$, then $X \sim \operatorname{Bin}(100, p)$.
(a) We want to know whether the coin is fair or not, so our hypothesis are

$$
\begin{aligned}
& H_{0}: \text { The coin is fair, } \\
& H_{1}: \text { The coin is not fair. }
\end{aligned}
$$

That is to say

$$
\begin{aligned}
& H_{0}: p=p_{0}=\frac{1}{2} \\
& H_{1}: p \neq p_{0}
\end{aligned}
$$

Then we should o a two-tailed test.
Under H_{0} we have that $\mathbb{E}_{0}(X)=50$ and $\operatorname{Var}_{0}(X)=n p_{0}\left(1-p_{0}\right)=25$. Now, take c_{1} and c_{2} such that

$$
\begin{aligned}
0.01 & \geq \mathbb{P}_{0}\left(X \notin\left(c_{1}, c_{2}\right)\right) \\
& =1-\mathbb{P}_{0}\left(\frac{c_{1}-50}{5} \leq \frac{X-50}{5} \leq \frac{c_{1}-50}{5}\right) \\
& \sim 1-\phi\left(\frac{c_{2}-50}{5}\right)+\phi\left(\frac{c_{1}-50}{5}\right) .
\end{aligned}
$$

We would like to make the rejection zone as biggest as we can, given that ϕ is symmetric, we just have to make

$$
\begin{aligned}
& \frac{c_{1}-50}{5}=-\frac{c_{2}-50}{5}, \\
\Rightarrow & c_{1}=100-c_{2}
\end{aligned}
$$

Finally

$$
\begin{aligned}
& 0.01 \geq 1-\phi\left(\frac{c_{2}-50}{5}\right)+1-\phi\left(\frac{c_{2}-50}{5}\right) \\
\Leftarrow & \phi\left(\frac{c_{2}-50}{5}\right) \geq 0.995 \\
\Leftarrow & c_{2} \geq 62.9
\end{aligned}
$$

then

$$
K_{1 \%}=[0,37] \cup[63,100] .
$$

Given that $60 \notin K_{1 \%}$ we cannot reject H_{0} with 0.01 level of significance.
(b) We have to take our hypothesis

$$
\begin{aligned}
& H_{0}: p \leq p_{0}=\frac{1}{2} \\
& H_{1}: p>p_{0}
\end{aligned}
$$

now we have to find c such that

$$
0.01 \geq \mathbb{P}_{0}(X \geq c) \sim 1-\phi\left(\frac{c-50}{5}\right)
$$

Then we have to choose $c \geq 61.5$, from what we have that $K_{1 \%}=[62,100]$. So we reject H_{0} if we have 62 or more heads.
(c) Take $p_{0} \in(0,1)$ and

$$
\begin{aligned}
& H_{0}: p=p_{0} \\
& H_{1}: p \neq p_{0}
\end{aligned}
$$

Note that $\mathbb{E}_{0}(X)=100 p_{0}$ and $\operatorname{Var}_{0}(X)=100 p_{0}\left(1-p_{0}\right)$. Then, take c_{1} and c_{2} such that

$$
\begin{aligned}
0.01 & \geq \mathbb{P}_{0}\left(X \notin\left(c_{1}, c_{2}\right)\right) \\
& =1-\mathbb{P}_{0}\left(\frac{c_{1}-100 p_{0}}{10 \sqrt{p_{0}\left(1-p_{0}\right)}} \leq \frac{X-100 p_{0}}{10 \sqrt{p_{0}\left(1-p_{0}\right)}} \leq \frac{c_{1}-100 p_{0}}{10 \sqrt{p_{0}\left(1-p_{0}\right)}}\right) \\
& \sim 1-\phi\left(\frac{c_{2}-100 p_{0}}{10 \sqrt{p_{0}\left(1-p_{0}\right)}}\right)+\phi\left(\frac{c_{1}-100 p_{0}}{10 \sqrt{p_{0}\left(1-p_{0}\right)}}\right) .
\end{aligned}
$$

Doing the same that in question a we have that $c_{1}\left(p_{0}\right)=100 p_{0}-19.6 \sqrt{p_{0}\left(1-p_{0}\right)}$ and $c_{2}\left(p_{0}\right)=100 p_{0}+19.6 \sqrt{p_{0}\left(1-p_{0}\right)}$. Then we are interested in the set

$$
\begin{aligned}
& \{p: 100 p-19.6 \sqrt{p(1-p)} \leq 60 \leq 100 p+19.6 \sqrt{p(1-p)}\} \\
= & \left\{p: 19.6^{2} p(1-p) \leq(60-100 p)^{2} \leq 19.6^{2} p(1-p)\right\}=[0.502,0.691] .
\end{aligned}
$$

Q2. Consider the null hypothesis $X \sim f(x) d x$ and the alternative $X \sim f(x-1) d x$ for the following cases:

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \\
& f(x)=\frac{1}{\pi\left(1+x^{2}\right)}
\end{aligned}
$$

Compute the form of the rejection of the likelihood area ratio test (Neyman-Pearson Lemma). Comment the difference

Solution:

Using the Neyman-Pearson test with the hypothesis

$$
\begin{aligned}
& H_{0}: X \sim f(x) d x \\
& H_{1}: X \sim f(x-1) d x
\end{aligned}
$$

We have that the likelihood ratio is given by

$$
L=\frac{f(x-1)}{f(x)} .
$$

then in the case of the normal variable $L=e^{x-\frac{1}{2}}$, and we have rejection when $L>c$, i.e. $x>\ln c+\frac{1}{2}$. Then the rejection set is of the form (a, ∞).

Figure 1: Rejections sets of the normal case.
In the case of the Cauchy random variable the likelihood ration is given by $L=\frac{x^{2}+1}{x^{2}-2 x+2}$, then we have an interesting behavior as you can see in figure 2. If you put $c=1$ then you will have a non bounded interval, but if you put $c>1$ you will have a bounded interval.
This happens because the Cauchy distribution is heavy tailed.

Figure 2: Rejections sets of the cauchy case.

Q3. Let $\left(X_{i}\right)_{i=1}^{n}$ be an i.i.d F-distributed sequence. Let F be absolutely continuous. The Sign test is a test where the null hypothesis is that the median of X is m, i.e.

$$
F^{-1}(m)=\frac{1}{2} .
$$

Use the Theorem 6.4 of the Skript to construct the test with significance level $\alpha=0.05$.

Solution:

We have to construct the test between the hypothesis:

$$
\begin{aligned}
& H_{0}: F^{-1}(0.5)=m, \\
& H_{1}: F^{-1}(0.5) \neq m .
\end{aligned}
$$

We will use the statistic $T_{n, m}=\sum_{i=1}^{m} \mathbf{1}_{\left\{X_{n} \leq m\right\}}$ and the test is going to be given by

$$
\phi(x)=1 \Leftrightarrow\left|T_{n, m}-\frac{n}{2}\right|>c(n, \alpha),
$$

where $x=\left(x_{i}\right)_{i=1}^{n}, n$ is the size of the experiment and α is the level of the test. We have that under $H_{0} T_{n, m}$ follows a law of $\operatorname{Bin}\left(n, \frac{1}{2}\right)$. Then if we define $k=\frac{n}{2}-c(n, \alpha)$, we should have, thanks to the symmetry of the Binomial:

$$
\sum_{j=0}^{k-1}\binom{n}{j} 0.5^{n} \leq \frac{\alpha}{2}<\sum_{j=0}^{k}\binom{n}{j} 0.5^{n}
$$

and $\frac{n}{2}+c(n, \alpha)=n-k$. Take $C \subseteq \mathbb{R}^{n+1}$

$$
C:=\left\{\left(x_{1}, \ldots, x_{n}, m\right): k \leq \sum_{i=1}^{n} \mathbf{1}_{\left\{x_{i} \geq m\right\}}<n-k\right\},
$$

then we would like $B\left(\left(x_{1}, . ., x_{n}\right)\right)=\left\{m:\left(x_{1}, \ldots, x_{n}, m\right) \in C\right\}$ to be a confidence interval of level α of $F\left(\frac{1}{2}\right)$. Note that

$$
m \in\left[x_{(j)}, x_{(j+1)}\right) \Leftrightarrow \sum_{i=1}^{n} \mathbf{1}_{\left\{x_{i}>m\right\}}=j
$$

then $B\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\left[x_{(k)}, x_{(n-k)}\right]$. Thanks to the central limit theorem

$$
\begin{aligned}
\mathbb{P}_{m}\left(k \leq \sum_{i=1}^{n} \mathbf{1}_{\left\{x_{i}>m\right\}} \leq n-k\right) & =\mathbb{P}_{m}\left(\frac{2}{\sqrt{n}}\left(k-\frac{n}{2}\right) \leq \frac{2}{\sqrt{n}}\left(\sum_{i=1}^{n} \mathbf{1}_{\left\{x_{i}>m\right\}}-\frac{n}{2}\right) \leq \frac{2}{\sqrt{n}}\left(\frac{n}{2}-k\right)\right) \\
& \approx \phi\left(\frac{2}{\sqrt{n}}\left(\frac{n}{2}-k\right)\right)-\phi\left(\frac{2}{\sqrt{n}}\left(k-\frac{n}{2}\right)\right) \\
& =2 \phi\left(\frac{2}{\sqrt{n}}\left(\frac{n}{2}-k\right)\right)-1
\end{aligned}
$$

We want it to be bigger than 0.95 , so $k \approx \frac{n}{2}-\frac{1.96}{2} \sqrt{n} \approx\left\lfloor\frac{n}{2}\right\rfloor-\sqrt{n}$. Then

$$
B\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\left[x_{\left(\left\lfloor\frac{n}{2}\right\rfloor-\sqrt{n}\right)}, x_{\left(\left\lfloor\frac{n}{2}\right\rfloor+\sqrt{n}\right)}\right]
$$

is a confidence interval with 95% of confidence level. Then using the same notation as in Theorem 6.4 we have that

$$
\begin{aligned}
C & :=\{(x, B(x))\} \\
& =\left\{(x, m): m \in\left[x_{\left(\left\lfloor\frac{n}{2}\right\rfloor-\sqrt{n}\right)}, x_{\left(\left\lfloor\frac{n}{2}\right\rfloor+\sqrt{n}\right)}\right]\right\} .
\end{aligned}
$$

Then $A(m)=\left\{x \in \mathbb{R}^{n}: \theta \in\left[x_{\left(\left\lfloor\frac{n}{2}\right\rfloor-\sqrt{n}\right)}, x_{\left(\left\lfloor\frac{n}{2}\right\rfloor+\sqrt{n}\right)}\right]\right\}$, so thanks to the Theorem 6.4 a test to the level 0.95 is given by $\varphi_{m}(x)=\mathbf{1}_{\left\{x_{\left(\left\lfloor\frac{n}{2}\right\rfloor-\sqrt{n}\right)} \leq m \leq x_{\left(\left\lfloor\frac{n}{2}\right\rfloor+\sqrt{n}\right)}\right\}}$.

