Lecturer: Prof. Dr. Sara van de Geer

Serie 8

April 28th, 2015
Q1. Let X_{1} and X_{2} follow a normal distribution with mean μ_{i} and variance σ_{i}^{2}. Prove that if X_{1} is independent of X_{2} then $X_{1}+X_{2} \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.
Solution: Let's suppose, first, that $\mu_{1}=\mu_{2}=0$. We just have to use the convolution formula:

$$
\begin{aligned}
f_{X_{1}+X_{2}}(x) & =\frac{1}{2 \pi \sigma_{1} \sigma_{2}} \int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2 \sigma_{1}^{2}}} e^{-\frac{(x-y)^{2}}{2 \sigma_{2}^{2}}} d y \\
& =\frac{1}{2 \pi \sigma_{1} \sigma_{2}} \int_{-\infty}^{\infty} \exp \left(-\frac{\sigma_{2}^{2} y^{2}+\sigma_{1}^{2}(x-y)^{2}}{2 \sigma_{1}^{2} \sigma_{2}^{2}}\right) d y \\
& =\frac{1}{2 \pi \sigma_{1} \sigma_{2}} \int_{-\infty}^{\infty} \exp \left(-\frac{\sigma_{2}^{2} y^{2}+\sigma_{1}^{2} x^{2}+\sigma_{1}^{2} y^{2}-2 \sigma_{1}^{2} x y}{2 \sigma_{1}^{2} \sigma_{2}^{2}}\right) d y \\
& =\frac{e^{-\frac{x^{2}}{2 \sigma_{2}^{2}}}}{2 \pi \sigma_{1} \sigma_{2}} \int_{-\infty}^{\infty} \exp \left(-\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) \frac{y^{2}-\frac{2 \sigma_{1}^{2} x y}{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}}{2 \sigma_{1}^{2} \sigma_{2}^{2}}\right) d y \\
& =\frac{e^{-\frac{x^{2}}{2 \sigma_{2}^{2}}+\frac{\sigma_{1}^{2} x^{2}}{2 \sigma_{2}^{2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}}}{2 \pi \sigma_{1} \sigma_{2}} \int_{-\infty}^{\infty} \exp \left(-\frac{\left(y-\frac{\sigma_{1}^{2} x}{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}\right)^{2}}{\frac{2 \sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}}\right) d y \\
& =\frac{1}{\sqrt{2 \pi} \sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}} e^{-\frac{x^{2}}{2\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}}
\end{aligned}
$$

that is the distribution function of a normal random variable with parameter $N\left(0, \sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)$.
For the general case note, that $X_{i}-\mu_{i}$ is distributed as $N\left(0, \sigma_{i}^{2}\right)$. So $\left(X_{1}-\mu_{1}\right)+\left(X_{2}-\mu_{2}\right) \sim$ $N\left(0, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$, then $X_{1}+X_{2} \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.

Q2. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\left(Z_{n}\right)_{n \in \mathbb{N}}$ a sequence of random variables.
(a) Prove that if $Z_{n} \xrightarrow{\mathbb{P}} c \in \mathbb{R}$, then for all bounded and continuous functions f

$$
\mathbb{E}\left(f\left(Z_{n}\right)\right) \rightarrow f(c) .
$$

(b) Show that if $Z_{n} \rightarrow c \in \mathbb{R}$ in distribution, then $Z_{n} \xrightarrow{\mathbb{P}} c$.

Solution:

(a) Take $\epsilon>0$, we know that there exists $\delta>0$ so that for all $x \in[c-\delta, c+\delta],|f(x)-f(c)| \leq$ ϵ. Then

$$
\begin{aligned}
\left|\mathbb{E}\left(f\left(Z_{n}\right)-f(c)\right)\right| & \leq \mathbb{E}\left(\left|f\left(Z_{n}\right)-f(c)\right|\right) \\
& \leq \mathbb{E}\left(\left|f\left(Z_{n}\right)-f(c)\right| \mathbf{1}_{\left\{\left|Z_{n}-c\right| \leq \delta\right\}}\right)+\mathbb{E}\left(\left|f\left(Z_{n}\right)-f(c)\right| \mathbf{1}_{\left\{\left|Z_{n}-c\right|>\delta\right\}}\right) \\
& \leq \epsilon+\|f\|_{\infty} \mathbb{P}\left(\left|Z_{n}-c\right|>\delta\right) \rightarrow \epsilon .
\end{aligned}
$$

(b) Take $\epsilon>0$ and define

$$
f_{\epsilon}(x) \mapsto \min \left\{\frac{1}{\epsilon} d(x,[c-\epsilon, c+\epsilon]), 1\right\} .
$$

f_{ϵ} is clearly a continuous function. Note that $f_{\epsilon}(x)=0$ if $x \in[c-\epsilon, c+\epsilon]$ and $f(x)=1$ if $|x-c| \geq 2 \epsilon$. Then we have that:

$$
\mathbb{P}\left(\left|X_{n}-c\right| \geq 2 \epsilon\right) \leq f_{\epsilon}\left(X_{n}\right) \rightarrow f_{\epsilon}(c)=0
$$

Q3. Take X_{n} i.i.d random variable so that

$$
\mathbb{E}\left(X_{1}\right)=1, \quad \operatorname{Var}\left(X_{1}\right)=2
$$

and define $S_{n}:=\sum_{i=1}^{n} X_{i}$.
(a) Use Chebyshev-inequality to estimate

$$
\mathbb{P}\left(\left|\frac{S_{n}}{n}-1\right| \leq 0.5\right)
$$

What is the value of the bound when $n=40$.
(b) Use the Central Limit Theorem to estimate

$$
\mathbb{P}\left(\left|\frac{S_{n}}{n}-1\right| \leq 0.5\right)
$$

What is the value of the bound when $n=40$.
Solution:
(a) We have by Chebyshev inequality that

$$
\begin{aligned}
\mathbb{P}\left(\left|\frac{S_{n}}{n}-1\right| \leq 0.5\right) & =1-\mathbb{P}\left(\left|\frac{S_{n}}{n}-1\right| \geq 0.5\right) \\
& \geq 1-\frac{\mathbb{E}\left(\left(\frac{S_{n}}{n}-1\right)^{2}\right)}{0.25} \\
& =1-\frac{\mathbb{E}\left(\operatorname{Var}\left(\frac{S_{n}}{n}\right)\right)}{0.25} \\
& =1-\frac{8}{n}
\end{aligned}
$$

When $n=40$, the bound is 0.8 .
(b) Thanks to Central Limit Theorem, we have that:

$$
\frac{\sqrt{n}}{\sqrt{\operatorname{Var}\left(X_{i}\right)}}\left(\frac{S_{n}}{n}-\mathbb{E}\left(X_{i}\right)\right) \xrightarrow{(d)} N(0,1) .
$$

Then, using this property we have

$$
\begin{aligned}
\mathbb{P}\left(\left|\frac{S_{n}}{n}-1\right| \leq 0.5\right) & =\mathbb{P}\left(\frac{\sqrt{n}}{\sqrt{2}}\left|\frac{S_{n}}{n}-1\right| \leq \frac{\sqrt{n}}{\sqrt{2}} 0.5\right) \\
& \approx \mathbb{P}(-\sqrt{5} \leq N(0,1) \leq \sqrt{5}) \\
& =\phi(\sqrt{5})-\phi(-\sqrt{5}) \approx 0.97
\end{aligned}
$$

Q4. Take $x \in[0,1]$. We say that x is normal if for x in its binary form,

$$
x=\sum_{n \in \mathbb{N}} x_{n} 2^{-n} \quad x_{n} \in\{0,1\},
$$

we have that $\lim _{n \rightarrow \infty} \frac{\left|\left\{1 \leq k \leq n: x_{k}=1\right\}\right|}{n}=\frac{1}{2}$.
(a) Prove that if we have a sequence $\left(U_{n}\right)_{n \in \mathbb{N}}$ i.i.d. Bernoulli with parameter $\frac{1}{2}$, then $U=$ $\sum_{n \in \mathbb{N}} U_{n} 2^{-n}$ is an uniform random variable in $[0,1]$
(b) Prove that if $U \sim U(0,1), \mathbb{P}(U$ is normal $)=1$.

Solution

(a) First we have to prove that U is measurable. For this we just have to realize that $U^{(m)}:=\sum_{n=1}^{m} U_{n} 2^{-n}$ is measurable because it's the finite sum of measurable function and we have that

$$
U_{n} \rightarrow U
$$

Second we have to understand the measure that U produces in \mathbb{R}. For this it's enough to show that the measure induced by U coincide with the uniform measure in the intervals of the form

$$
\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right],
$$

for $k \in \mathbb{N} \in\left[0,2^{n}-1\right]$. This is because they generate the Borel σ-algebra.
Note that

$$
\mathbb{P}\left((\exists n \in \mathbb{N})(\forall m \geq n) X_{m}=1\right)=0
$$

thanks to Borel-Cantelli Lemma. So we can work in

$$
\tilde{\Omega}:=\Omega \backslash\left\{\omega \in \Omega:(\exists n \in \mathbb{N})(\forall m \geq n) X_{m}=1\right\}
$$

i.e. our probability space is $(\tilde{\Omega}, \tilde{\mathcal{A}}, \tilde{\mathbb{P}})$ where $\tilde{\mathcal{A}}=\left.\mathcal{A}\right|_{\tilde{\Omega}}$ and $\tilde{\mathbb{P}}:=\left.\mathbb{P}\right|_{\tilde{\Omega}}$. Now we have that if $k=\sum_{i=0}^{n-1} k_{i} 2^{n} \in\left\{0,1, . ., 2^{n}-1\right\}$:

$$
\begin{aligned}
\mathbb{P}\left(U \in\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right]\right) & =\mathbb{P}\left(\bigcap_{i=0}^{2^{n}-1}\left\{U_{i+1}=k_{n-i}\right\}\right) \\
& =\prod_{i=0}^{2^{n}-1} \mathbb{P}\left(U_{i+1}=k_{n-i}\right) \\
& =2^{-n}
\end{aligned}
$$

That is the probability of a uniform random variable to be in $\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right]$.
(b) Take $\left(U_{n}\right)_{n \in \mathbb{N}}$ Bernoulli $\frac{1}{2}$ i.i.d. Thanks to part (a) we have that $U:=\sum_{n=1}^{n} U_{n} 2^{-n}$ is uniform distributed and it's normal iff $\frac{\sum_{k=1}^{n} \mathbf{1}_{\left\{U_{k}=1\right\}}}{n} \rightarrow \frac{1}{2}$. Then:

$$
\mathbb{P}(U \text { is normal })=\mathbb{P}\left(\frac{\sum_{k=1}^{n} \mathbf{1}_{\left\{U_{k}=1\right\}}}{n}=1\right)=1
$$

Where in the last equality we have used the law of large numbers.

