Probabilities and statistics

Lecturer: Prof. Dr. Sara van de Geer
ETHzürich
Prof. Dr. Martin Larsson

Serie 1

February 24th, 2014
Q1. We throw simultaneously two dices, one green and one red. Consider the following events:

- $W_{1}:=$ Neither of the dices has a result greater than 2.
- $W_{2}:=$ The green and the red one have the same number on them.
- $W_{3}:=$ The number on the green is 3 times the number on the red.
- $W_{4}:=$ The number on the red is by one greater than the number on the green one.
- $W_{5}:=$ The number of the green one is greater or equal than the number on the red one.
(a) Write a suitable space Ω where all of these events can live.
(b) Describe W_{i} as a subsets of Ω.
(c) If you were colorblind (you cannot differentiate green and red). How does the sample space Ω change?, which W_{i} can live in this space?.

Q2. You have a box with $4 k$ balls each one numerated with a different number in $\{1, \ldots, 4 k\}$. At time j you take out one ball, look at its number and put it back, you repeat this experiments n times. Define

- $A_{j}:=$ The number taken out in the j-th time is bigger than $2 k$.
- $B_{j}:=$ The number taken out in the j-th time is even.
(a) Write in terms of $\left(A_{j}\right)_{j=1}^{n}$ and $\left(B_{j}\right)_{j=1}^{n}$ the following events
i. $A:=$ Between 1 and n there was never a number bigger than $2 k$.
ii. $B:=$ Between 1 and n there was at least one even number.
iii. $C:=$ The amount of balls bigger than $2 k$ is bigger or equal than the amount of even balls.
(b) Describe in words the following events
i. $\left(\bigcup_{j=1}^{n}\left(A_{j}\right)^{c}\right)^{c}$.
ii. $\bigcup_{j=1}^{n-2}\left(A_{j} \cap A_{j+1} \cap B_{j+2}\right)$.
iii. $\bigcup_{m=1}^{n} \bigcap_{j=m}^{n}\left(A_{j} \cap B_{j}\right)$.
(c) For all $A \subseteq \Omega=\{1, . ., 4 k\}^{n}$ define

$$
\mathbb{P}(A)=\frac{|A|}{(4 k)^{n}}
$$

Show that for all strictly increasing sequences $\left(j_{m}\right)_{m=1}^{N_{j}},\left(l_{m}\right)_{m=1}^{N_{l}}$ we have that

$$
\mathbb{P}\left(\bigcap_{m=1}^{N_{j}} A_{j_{m}} \cap \bigcap_{m=1}^{N_{l}} B_{l_{m}}\right)=\left(\frac{1}{2}\right)^{N_{l}+N_{j}}
$$

Q3. Let $\left(A_{j}\right)_{j=1}^{n}$ be events:
(a) Show that:

$$
\mathbf{1}_{\bigcup_{j=1}^{n} A_{j}}=1-\prod_{j=1}^{n}\left(1-\mathbf{1}_{A_{j}}\right)
$$

use it to prove that:

$$
\mathbb{P}\left[\bigcup_{j=1}^{n} A_{j}\right]=\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \mathbb{P}\left[\bigcap_{j=1}^{k} A_{i_{j}}\right]
$$

(b) Using induction prove the following statements:

$$
\begin{aligned}
& \mathbb{P}\left[\bigcup_{j=1}^{n} A_{j}\right] \leq \sum_{j=1}^{n} \mathbb{P}\left[A_{j}\right]-\sum_{j=1}^{n-1} \mathbb{P}\left[A_{j} \cap A_{j+1}\right] \\
& \mathbb{P}\left[\bigcup_{j=1}^{n} A_{j}\right] \geq \sum_{j=1}^{n} \mathbb{P}\left[A_{j}\right]-\sum_{i, j=1, i \neq j}^{n} \mathbb{P}\left[A_{j} \cap A_{i}\right]
\end{aligned}
$$

Have a nice week $\odot \boldsymbol{\odot}!!$.

