Probabilities and statistics

Lecturer: Prof. Dr. Sara van de Geer

Prof. Dr. Martin Larsson

Serie 2

March 2nd, 2014
Q1. Let $G=(V, K)$ be an arbitrary finite and undirected graph with vertices V and edges K, i.e., V is a finite set and $K \subseteq\{\{x, y\} \in V: x \neq y\}$. The MAX-CUT problem is to find a subset $A \subseteq V$ such that the number of edges connecting A and $A^{c}\left(K_{A}\right)$ is as large as possible, i.e., $K_{A}=\left\{\{x, y\} \in K: x \in A, y \in A^{c}\right\}$. We want to show that there exists $A \subseteq V$ so that $\left|K_{A}\right| \geq \frac{1}{2}|K|$.
(a) Choose $A \subseteq V$ to be random set uniformly in 2^{V}. Calculate $\mathbb{P}\left(e \in K_{A}\right)$, i.e. $\mathbb{P}\left(\left\{A: e \in K_{A}\right\}\right)$
(b) Using the linearity of the expectation show that

$$
\mathbb{E}\left[\left|K_{A}\right|\right]=\frac{1}{2}|K| .
$$

(c) Show that there exists an A so that $\left|K_{A}\right| \geq \frac{1}{2}|K|$.

Q2. (a) Take $p \in[0,1]$ and $n \in \mathbb{N} \backslash\{0\}$. We say that $X \sim \operatorname{Bin}(n, p)$ if the distribution of X is

$$
\mathbb{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k \in\{0,1, \ldots, n\} .
$$

Show that this is indeed a probability distribution using 2 different methods:
i. Calculating $\sum_{k} \mathbb{P}(X=k)$.
ii. Representing this probability in terms of the box model with replacement.

Calculate the expected value of X using 2 different methods (the one listed above).
(b) Take $K, n \in \mathbb{N}$ and $N \in \mathbb{N} \backslash\{0\}$ with $K, n \leq N$. We say that a random variable $X \sim \operatorname{Hyp}(N, k, n)$ if its distribution is given by

$$
\mathbb{P}(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}} \quad k \in\{\max \{0, n+K-N\}, . ., \min \{n, K\}\}
$$

Show that this is indeed a probability distribution using 2 different methods:
i. Calculating $\sum_{k} \mathbb{P}(X=k)$.

Hint: Calculate $(1+x)^{n}$ in two different ways and identify the terms.
ii. Representing this probability in the box model without replacement.

Calculate the expectation using both methods.
Q3. The voting problem Assume you have n votes in an election with two candidate (all people vote for one and only one of them) and the winning candidate have k more votes than the loser. If the votes were counted in a random way (the uniform measure in all possible ways of ordering the votes). What is the probability that there was never a moment, except the beginning, where the loser candidate has the same number or more number of votes than
the winning one.
Hint: Define $\left(S_{l}\right)_{0 \leq n \leq N}:=\sum_{i=1}^{l} X_{i}$ where

$$
X_{i}:=\left\{\begin{aligned}
1 & \text { the vote was for the winner } \\
-1 & \text { the vote was for the loser }
\end{aligned}\right.
$$

Note that the event we are looking for is $A:=\bigcap_{l=1}^{n}\left\{w \in \Omega: S_{l}(\omega)>0\right\}$, calculate $|A|$ and $|\Omega|$.

Have a nice week \mathbb{C} D!!.

