

ETH

Serie 2

March 2nd, 2014

- **Q1.** Let G = (V, K) be an arbitrary finite and undirected graph with vertices V and edges K, i.e., V is a finite set and $K \subseteq \{\{x, y\} \in V : x \neq y\}$. The MAX-CUT problem is to find a subset $A \subseteq V$ such that the number of edges connecting A and A^c (K_A) is as large as possible, i.e., $K_A = \{\{x, y\} \in K : x \in A, y \in A^c\}$. We want to show that there exists $A \subseteq V$ so that $|K_A| \geq \frac{1}{2}|K|$.
 - (a) Choose $A \subseteq V$ to be random set uniformly in 2^V . Calculate $\mathbb{P}(e \in K_A)$, i.e. $\mathbb{P}(\{A : e \in K_A\})$
 - (b) Using the linearity of the expectation show that

$$\mathbb{E}\left[|K_A|\right] = \frac{1}{2}|K|.$$

- (c) Show that there exists an A so that $|K_A| \ge \frac{1}{2}|K|$.
- **Q2.** (a) Take $p \in [0,1]$ and $n \in \mathbb{N} \setminus \{0\}$. We say that $X \sim Bin(n,p)$ if the distribution of X is

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \qquad k \in \{0, 1, ..., n\}.$$

Show that this is indeed a probability distribution using 2 different methods:

- i. Calculating $\sum_{k} \mathbb{P}(X = k)$.
- ii. Representing this probability in terms of the box model with replacement.

Calculate the expected value of X using 2 different methods (the one listed above).

(b) Take $K, n \in \mathbb{N}$ and $N \in \mathbb{N} \setminus \{0\}$ with $K, n \leq N$. We say that a random variable $X \sim Hyp(N, k, n)$ if its distribution is given by

$$\mathbb{P}(X=k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}} \qquad k \in \{\max\{0, n+K-N\}, .., \min\{n, K\}\}\$$

Show that this is indeed a probability distribution using 2 different methods:

- i. Calculating $\sum_k \mathbb{P}(X = k)$.
 - **Hint:** Calculate $(1 + x)^n$ in two different ways and identify the terms.
- ii. Representing this probability in the box model without replacement.

Calculate the expectation using both methods.

Q3. THE VOTING PROBLEM Assume you have n votes in an election with two candidate (all people vote for one and only one of them) and the winning candidate have k more votes than the loser. If the votes were counted in a random way (the uniform measure in all possible ways of ordering the votes). What is the probability that there was never a moment, except the beginning, where the loser candidate has the same number or more number of votes than

the winning one. **Hint:** Define $(S_l)_{0 \le n \le N} := \sum_{i=1}^l X_i$ where

 $X_i := \begin{cases} 1 & \text{the vote was for the winner,} \\ -1 & \text{the vote was for the loser.} \end{cases}$

Note that the event we are looking for is $A := \bigcap_{l=1}^{n} \{ w \in \Omega : S_l(\omega) > 0 \}$, calculate |A| and $|\Omega|$.

Have a nice week (\Leftrightarrow)!!.