Probabilities and statistics

Lecturer: Prof. Dr. Sara van de Geer

Prof. Dr. Martin Larsson

Serie 4

March 16th, 2015
Q1. Define $B_{0}=\frac{1}{2}$. We want to play the following game: "In time n we bet $B_{n}=2 B_{n-1}$. Then we flip a coin X_{n} if it's -1 (Tail) we lose all the money we bet, if it's 1 (Head) we win the same amount of money we bet and we stop the game". Define $\left(V_{n}\right)_{n \in \mathbb{N}}$ the amount of money bet at time n :
(a) Compute the distribution of profit $(V X)_{n}$. What is the probability of losing?
(b) Compute the expected value of $(V X)_{n}$. Then compute

$$
\operatorname{Var}\left((V X)_{n}\right):=\mathbb{E}\left(\left((V X)_{n}-\left(\mathbb{E}(V X)_{n}\right)\right)^{2}\right)
$$

Q2. We are interested in studying the probability of success of a student at an entrance exam to two departments of a university. Consider the following events

$$
\begin{aligned}
& A=\{\text { The student is man }\} \\
& A^{c}=\{\text { The student is woman }\} \\
& B=\{\text { The student applied for department I }\}, \\
& B^{c}=\{\text { The student applied for department II }\}, \\
& C=\{\text { The student was accepted }\} \\
& C^{c}=\{\text { The student wasn't accepted }\}
\end{aligned}
$$

We assume that we have the following probabilities (Berkeley 1973):
$\mathbb{P}(A)=0.73$,
$\mathbb{P}(B \mid A)=0.69, \quad \mathbb{P}\left(B \mid A^{c}\right)=0.24$,
$\mathbb{P}(C \mid A \cap B)=0.62, \quad \mathbb{P}\left(C \mid A^{c} \cap B\right)=0.82, \quad \mathbb{P}\left(C \mid A \cap B^{c}\right)=0.06, \quad \mathbb{P}\left(C \mid A^{c} \cap B^{c}\right)=0.07$.
(a) Draw a tree describing the situation with the probabilities associated.
(b) Taking in to consideration the following probabilities $\mathbb{P}[C \mid A \cap B]=0.62$,
$\mathbb{P}\left[C \mid A^{c} \cap B\right]=0.82, \mathbb{P}\left[C \mid A \cap B^{c}\right]=0.06, \mathbb{P}\left[C \mid A^{c} \cap B^{c}\right]=0.07$. With this information, do you think that in this examination women are disadvantaged?.
(c) Compute $\mathbb{P}(C \mid A)$ and $\mathbb{P}\left(C \mid A^{c}\right)$. Does this coincide with your answer of b)?.

Q3. Introduction to Bayesian Statistics We have m urns with red and white balls. The urn $i \in\{1, . . m\}$ has $2 i-1$ red balls and $2 m-2 i+1$ white ones. We randomly select an urn and extract with replacement n times. Define:

$$
X_{j}:= \begin{cases}1 & \text { If the } j \text {-th ball is red, } \\ 0 & \text { If the } j \text {-th ball is white }\end{cases}
$$

We are interested in the following problem " Given that you see $\left(X_{j}\right)_{j=1}^{n}$, can you say from which urn this balls were taken?".
(a) Compute $\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$ for $x_{i} \in\{0,1\}$ a possible result of the experiment. Are $X_{1}, . ., X_{n}$ independent?
(b) Compute the following probability

$$
\mathbb{P}\left(\text { The box chose in } i \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)
$$

Show that this only depends on the number or red balls, i.e., $k=\sum_{i=1}^{n} x_{i}$.
(c) Compute \mathbb{P} (The box chose in $\left.i \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$ for $m=3$ and $n=3$:

	$i=1$	$i=2$	$i=3$
$k=0$			
$k=1$			
$k=2$			
$k=3$			

Q4. Monty hall problem. Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. j ($j=2$ or $j=3$), which has a goat. He then says to you, "Do you want to pick door No. $l(l=2$ or $l=3$ with $l \neq j)$?" Is it to your advantage to change your choice?
For trying to solve this problem we define the following

$$
\begin{array}{lr}
B_{i}=\text { "Auto is behind i." } & (i=1,2,3), \\
A_{j}=\text { "Moderator open door j." } & (j=2,3) .
\end{array}
$$

(a) Define a natural model for the problem. Under this model compute $\mathbb{P}\left(B_{i}\right)$ for $i \in\{1,2,3\}$ and $\mathbb{P}\left(A_{j} \mid B_{i}\right)$ for $i \in\{1,2,3\}$ and $j \in\{2,3\}$.
(b) Compute the Bayes formula $\mathbb{P}\left(B_{1} \mid A_{j}\right)$ for $j \in\{2,3\}$. Does opening the other door with a goat behind changes the probability that the car is behind door number 1 is?
(c) Would you change your choice?

Have a nice week $\odot \boldsymbol{\Theta}!!$.

