

ETH

Serie 5

March 23rd, 2015

Q1. Let $s \in (1, \infty)$. We define the Riemann's Zeta Function as:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

We want to prove that:

$$\zeta(s) = \frac{1}{\prod_{i=1}^{\infty} (1 - p_i^{-s})}.$$

where $p_1, p_2, ..., p_k, ... = 2, 3, 5, 7, ...$ is the series of the ordered prime numbers.

(a) Take $(\mathbb{N}, 2^{\mathbb{N}}, \mathbb{P})$ with

$$\mathbb{P}(W) := \frac{1}{\zeta(s)} \sum_{n \in N} \frac{1}{n^s}, \quad W \in 2^{\mathbb{N}}.$$

Show that $(\mathbb{N}, 2^{\mathbb{N}}, \mathbb{P})$ is a probability space.

- (b) Let p be a prime number. Define $N_p := \{n \in \mathbb{N} : n \text{ is divisible by p.}\}$. Calculate $\mathbb{P}(N_p)$.
- (c) Prove that the events $(N_p)_{p \text{ prime}}$ are independent under this probability measure.
- (d) Compute

$$\mathbb{P}\left(\bigcap_{p \text{ prime}} N_p^c\right)$$

and conclude.

Q2. σ -ALGEBRAS

- (a) Let $(\mathcal{A}_i)_{i \in I}$ be a family of σ -algebras. Show that $\bigcap_{i \in I} \mathcal{A}_i$ is a σ -Algebra.
- (b) Prove that if \mathcal{A}_1 and \mathcal{A}_2 are σ -algebras, $\mathcal{A}_1 \cup \mathcal{A}_2$ is a σ -Algebra iff $\mathcal{A}_1 \subseteq \mathcal{A}_2$ or $\mathcal{A}_2 \subseteq \mathcal{A}_3$.
- (c) Let \mathcal{A} be a σ -algebra and Ψ an event. For $i \in \mathbb{N}$ define $A_i \in \mathcal{A}$ as "At time *i* the event Ψ occurs". Write, with the help of A_i the following sets. Additionally show that they belong to \mathcal{A} .
 - i. " Ψ never occurs"
 - ii. " Ψ occurs infinitely many times".
 - iii. " From a moment onward Ψ never occurs".
 - iv. " Ψ occurs exactly twice".
 - v. " Ψ occurs in total an odd number of times".

Which of them belong to the tail σ -algebra, i.e.,

$$\mathcal{A}_{\infty} := \bigcap_{n \in \mathbb{N}} \sigma(\{A_k : k \ge n\})?$$

Q3. Let $(\{0,2\}^{\mathbb{N}},\mathcal{A},\mathbb{P})$ be the model of infinite tossing of coins (Skript Satz 3.2, p. 40). We consider the random variable:

$$\begin{array}{rcl} X: & \{0,2\}^{\mathbb{N}} & \longrightarrow & [0,1] \\ & \omega = (\omega_1, \omega_2, \ldots) & \mapsto & X(\omega) = \sum_{n=1}^{\infty} \frac{\omega_n}{3^n}. \end{array}$$

- (a) Prove that X is measurable.
- (b) Show that the cumulative distribution function of X is continuous.
- (c) Prove that there exist disjoint intervals $I_k \subseteq [0,1]$ so that F is constant in I_k and $\lambda(\bigcup_{k=1}^{\infty} I_k) = 1$. (Where λ is the Lebesgue measure) Hint:

•
$$X(\omega) = \sum_{n=1}^{\infty} \frac{X_n(\omega)}{3^n}$$

- F is constant on $X(\{0,2\}^n)^c$.
- **Q4.** THE BERTRAND'S PARADOX Consider an equilateral triangle inscribed in a circle of radius 1. Suppose a chord of the circle is chosen at random. What is the probability that the chord is longer than a side of the triangle?. For solving this try the following probability models:
 - (a) The "random endpoints" method: Choose two uniform random points on the circumference of the circle and draw the chord joining them, i.e., let $U, V \sim U(0, 1)$, define $X = e^{U2\pi i}, Y = e^{V2\pi i}$ and take the chord connecting X and Y.
 - (b) The "random radius" method: Choose a radius of the circle, choose a uniform point on the radius and construct the chord through this point and perpendicular to the radius, i.e., choose a radius and choose $r \sim U(0, 1)$, take the point on the radius that is at distance r from the center and the chord will be the only chord perpendicular to this point.
 - (c) The "random midpoint" method: Choose a point uniformly anywhere within the circle and construct a chord with the chosen point as its midpoint, i.e., take $(x, y) \sim U(B(0, 1))$ and take the chord whose midpoint is (x, y).
 - (d) Is this a contradiction?