Lecturer: Prof. Dr. Sara van de Geer
Prof. Dr. Martin Larsson

Serie 5

March 23rd, 2015
Q1. Let $s \in(1, \infty)$. We define the Riemann's Zeta Function as:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

We want to prove that:

$$
\zeta(s)=\frac{1}{\prod_{i=1}^{\infty}\left(1-p_{i}^{-s}\right)}
$$

where $p_{1}, p_{2}, . ., p_{k}, . .=2,3,5,7, \ldots$ is the series of the ordered prime numbers.
(a) Take $\left(\mathbb{N}, 2^{\mathbb{N}}, \mathbb{P}\right)$ with

$$
\mathbb{P}(W):=\frac{1}{\zeta(s)} \sum_{n \in N} \frac{1}{n^{s}}, \quad W \in 2^{\mathbb{N}}
$$

Show that $\left(\mathbb{N}, 2^{\mathbb{N}}, \mathbb{P}\right)$ is a probability space.
(b) Let p be a prime number. Define $N_{p}:=\{n \in \mathbb{N}: n$ is divisible by p. $\}$. Calculate $\mathbb{P}\left(N_{p}\right)$.
(c) Prove that the events $\left(N_{p}\right)_{p}$ prime are independent under this probability measure.
(d) Compute

$$
\mathbb{P}\left(\bigcap_{p \text { prime }} N_{p}^{c}\right)
$$

and conclude.
Q2. σ-ALGEBRAS
(a) Let $\left(\mathcal{A}_{i}\right)_{i \in I}$ be a family of σ-algebras. Show that $\bigcap_{i \in I} \mathcal{A}_{i}$ is a σ-Algebra.
(b) Prove that if \mathcal{A}_{1} and \mathcal{A}_{2} are σ-algebras, $\mathcal{A}_{1} \cup \mathcal{A}_{2}$ is a σ-Algebra iff $\mathcal{A}_{1} \subseteq \mathcal{A}_{2}$ or $\mathcal{A}_{2} \subseteq \mathcal{A}_{3}$.
(c) Let \mathcal{A} be a σ-algebra and Ψ an event. For $i \in \mathbb{N}$ define $A_{i} \in \mathcal{A}$ as " At time i the event Ψ occurs". Write, with the help of A_{i} the following sets. Additionally show that they belong to \mathcal{A}.
i. " Ψ never occurs"
ii. " Ψ occurs infinitely many times".
iii. " From a moment onward Ψ never occurs".
iv. " Ψ occurs exactly twice".
v. " Ψ occurs in total an odd number of times".

Which of them belong to the tail σ-algebra, i.e.,

$$
\mathcal{A}_{\infty}:=\bigcap_{n \in \mathbb{N}} \sigma\left(\left\{A_{k}: k \geq n\right\}\right) ?
$$

Q3. Let $\left(\{0,2\}^{\mathbb{N}}, \mathcal{A}, \mathbb{P}\right)$ be the model of infinite tossing of coins (Skript Satz 3.2, p. 40). We consider the random variable:

$$
\begin{array}{rlll}
X: & \{0,2\}^{\mathbb{N}} & \longrightarrow & {[0,1]} \\
& \omega=\left(\omega_{1}, \omega_{2}, \ldots\right) & \mapsto & X(\omega)=\sum_{n=1}^{\infty} \frac{\omega_{n}}{3^{n}}
\end{array}
$$

(a) Prove that X is measurable.
(b) Show that the cumulative distribution function of X is continuous.
(c) Prove that there exist disjoint intervals $I_{k} \subseteq[0,1]$ so that F is constant in I_{k} and $\lambda\left(\bigcup_{k=1}^{\infty} I_{k}\right)=1$. (Where λ is the Lebesgue measure)
Hint:

- $X(\omega)=\sum_{n=1}^{\infty} \frac{X_{n}(\omega)}{3^{n}}$.
- F is constant on $X\left(\{0,2\}^{n}\right)^{c}$.

Q4. The Bertrand's Paradox Consider an equilateral triangle inscribed in a circle of radius 1. Suppose a chord of the circle is chosen at random. What is the probability that the chord is longer than a side of the triangle?. For solving this try the following probability models:
(a) The "random endpoints" method: Choose two uniform random points on the circumference of the circle and draw the chord joining them, i.e., let $U, V \sim U(0,1)$, define $X=e^{U 2 \pi i}, Y=e^{V 2 \pi i}$ and take the chord connecting X and Y.
(b) The "random radius" method: Choose a radius of the circle, choose a uniform point on the radius and construct the chord through this point and perpendicular to the radius, i.e., choose a radius and choose $r \sim U(0,1)$, take the point on the radius that is at distance r from the center and the chord will be the only chord perpendicular to this point.
(c) The "random midpoint" method: Choose a point uniformly anywhere within the circle and construct a chord with the chosen point as its midpoint, i.e., take $(x, y) \sim U(B(0,1))$ and take the chord whose midpoint is (x, y).
(d) Is this a contradiction?

