Lecturer: Prof. Dr. Sara van de Geer

Prof. Dr. Martin Larsson

Midterm Exam: Solution

April 14th, 2015
Q1. Let $\left(S_{k}\right)_{k=0}^{2 n}$ be a simple random walk. We want to calculate $\mathbb{P}\left(S_{2 n}=-2 k=\min _{i=0, \ldots, 2 n} S_{i}\right)$.
(a) (2 points) For $-n \leq k \leq n$, compute $\mathbb{P}\left(S_{2 n}=2 k\right)$. What is the value of $\mathbb{P}\left(S_{2 n}\right.$ is odd)? Hint: Recall the formula of $\mathbb{P}\left(S_{2 n}=2 k-2 n\right)$.
(b) (4 points) Define $T_{-1}=\inf \left\{k \in \mathbb{N}: S_{k}=-1\right\}$. Use the reflection principle to prove that, for $k \geq 0$:

$$
\mathbb{P}\left(S_{2 n}=2 k, T_{-1}>2 n\right)=2^{-2 n}\left(\binom{2 n}{k+n}-\binom{2 n}{k+n+1} 1_{\{k<n\}}\right) .
$$

(c) (4 points) Prove that

$$
\mathbb{P}\left(S_{2 n}=-2 k=\min _{i=0, \ldots, 2 n} S_{i}\right)=\mathbb{P}\left(S_{2 n}=2 k, T_{-1}>2 n\right) \quad \forall k \geq 0
$$

Hint: It may be useful to make a Bijection between well-chosen sets.
(d) (3 points) Use (b) and (c) to compute $\mathbb{P}\left(S_{2 n}=\min _{i=0, \ldots, 2 n} S_{i}\right)$.

Solution:

(a) We know from the Skript p. 9 that $\mathbb{P}\left(S_{2 n}=2 j-2 n\right)=\binom{2 n}{j} 2^{-2 n}$, then

$$
\mathbb{P}\left(S_{2 n}=2 k\right)=\binom{2 n}{n+k} 2^{-2 n}
$$

We know that we are summing an even number of 1 and -1 so it's not possible to have an odd number, then $\mathbb{P}\left(S_{2 n}\right.$ odd $)=0$.
(b) Using the reflection principle we have that

$$
\begin{aligned}
\mathbb{P}\left(S_{2 n}=2 k, T_{-1}>2 n\right) & =\mathbb{P}\left(S_{2 n}=2 k\right)-\mathbb{P}\left(S_{2 n}=2 k, T_{-1}<2 n\right) \\
& =\binom{2 n}{k+n} 2^{-2 n}-\mathbb{P}\left(S_{2 n}=-2 k-2\right) \\
& =2^{-2 n}\left(\binom{2 n}{k+n}-\binom{2 n}{k+n+1} \mathbf{1}_{\{k<n\}}\right) .
\end{aligned}
$$

(c) Define:

$$
\begin{aligned}
\Omega & =\left\{\left(x_{k}\right)_{k=0}^{2 n}: x_{0}=0,(\forall k \in\{0,1, . ., 2 n\})\left|x_{k}-x_{k+1}\right|=1\right\} \\
A & :=\left\{x \in \Omega: x_{2 n}=2 k, x_{k} \geq 0\right\}, \\
B & :=\left\{x \in \Omega: x_{2 n}=-2 k=\min _{i=0,1, \ldots, 2 n} x_{i}\right\} .
\end{aligned}
$$

The probability measure is a Laplace model, so it's enough to show that $|A|=|B|$. Define $f: A \rightarrow B$ with $f(x)_{k}=x_{2 n-k}-2 k$. It's clear if $x \in A, f(x) \in B$ because $f(x)_{0}=0, f(x)_{2 n}=-2 k$ and due to $x_{k} \geq 0$, we have that

$$
f(x)_{k} \geq-2 k=f(x)_{2 n}=\min _{i=0,1, \ldots, 2 n} x_{i}
$$

f it's clearly invertible so $|A|=|B|$.
(d) We combine (b) and (c) to get

$$
\begin{aligned}
\mathbb{P}\left(S_{2 n}=\min _{i=0, \ldots, 2 n} S_{i}\right) & =\sum_{k=0}^{n} \mathbb{P}\left(S_{2 n}=\min _{i=0, \ldots, 2 n} S_{i}=-2 k\right) \\
& =\sum_{k=0}^{n} 2^{-2 n}\left(\binom{2 n}{k+n}-\binom{2 n}{k+n+1} \mathbf{1}_{\{k<n\}}\right) \\
& =\binom{2 n}{n} 2^{-2 n} .
\end{aligned}
$$

Q2. An interviewer stops a person in the street. He asks some question about his/her family. We assume a Laplace Model on this question.
(a) (3 points) Suppose we know that the person has two children and at least one of them is a boy. What is the probability that the other child is also a boy?
Hint: First write down an appropriate probabilistic model.
(b) (3 points) Suppose we know that he/she has two children which are not twins, and at least one of them is a boy born on Monday. Compute the probability that the other one is a boy. Assume that the day of birth is uniformly distributed over the week and that it is independent of gender.
Hint: First write down an appropriate probabilistic model.
(c) (4 points)Suppose we know that he/she has n children, and at least one of them is a boy. Compute the probability that she/he has at least 2 sons.
Hint: First write down an appropriate probabilistic model.

Solution:

(a) Take $\Omega:=\{(0,1)\}^{2}$ where 0 means that the kid is a boy and 1 that is a girl. Computing

$$
\mathbb{P}(\text { Both are male } \mid \text { There is one male })=\frac{\mathbb{P}(\text { Both are male })}{\mathbb{P}(\text { There is one male })}=\frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3}
$$

(b) Take $\Omega=(\{0,1\} \times\{1,7\})^{2}$ where for $((a, b)(c, d)) \in \Omega(a, b)$ represent the first child, a represent his/her sex and b the day of the week he/she was born. Computing
$\mathbb{P}($ There is one male born on monday $)=1-\mathbb{P}($ There is no male born on monday $)$

$$
=1-\left(\frac{13}{14}\right)^{2}=\frac{27}{196}
$$

Additionally

\mathbb{P} (Both are male and there is one born on Monday)
$=\mathbb{P}($ Both are male $)-\mathbb{P}($ Both are male and there is none born on Monday $)$

$$
=\frac{1}{4}-\left(\frac{1}{2} \cdot \frac{6}{7}\right)^{2}=\frac{13}{49 \cdot 4} .
$$

Finally

$\mathbb{P}($ Both are male \mid There is one male and is born on monday $)=\frac{\frac{13}{196}}{\frac{27}{196}}=\frac{13}{27}$.
(c) Take $\Omega:=\{(0,1)\}^{n}$ where 0 means that the kid is a boy and 1 that is a girl. Computing $\mathbb{P}($ There is at least two male $)=1-\mathbb{P}($ There less than two male $)=1-2^{-n}-n 2^{-n}$. Additionally

$$
\mathbb{P}(\text { There is at least one male })=1-2^{-n} .
$$

Finally

$$
\mathbb{P}(\text { There is at least two male } \mid \text { There is at least one male })=\frac{1-2^{-n}-n 2^{-n}}{1-2^{-n}} .
$$

Q3. Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of independent normal random variables, with 0 mean and variance 1. Recall that X is a normal random variable with 0 mean and variance 1 if

$$
\mathbb{P}(X \geq t)=\int_{t}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x
$$

(a) (2 points) State the Borell-Cantelli Lemma 1 and 2.

For X a standard normal random variable and $t>0$, assume the following inequalities for the question (b) and (c) (we are going to prove them later):

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \frac{t}{t^{2}+1} e^{\frac{-t^{2}}{2}} \leq P(X \geq t) \leq \frac{1}{\sqrt{2 \pi}} \frac{1}{t} e^{\frac{-t^{2}}{2}} \tag{1}
\end{equation*}
$$

(b) (4 points) Prove that $\mathbb{P}\left(\limsup \frac{X_{n}}{\sqrt{\log (n)}} \leq \sqrt{2}\right)=1$.

Hint: For $\alpha>\sqrt{2}$, define $A_{n}^{\alpha}=\left\{X_{n} \geq \alpha \sqrt{\log (n)}\right\}$ compute $\sum_{n \in \mathbb{N}} \mathbb{P}\left(A_{n}^{\alpha}\right)$.
(c) (4 points) Prove that $\mathbb{P}\left(\lim \sup \frac{X_{n}}{\sqrt{\log (n)}}=\sqrt{2}\right)=1$.

Now we are interested to prove the inequalities (1).
(d) (3 points)Prove that if $X \sim N(0,1)$ and $t>0$

$$
P(X \geq t) \leq \frac{1}{\sqrt{2 \pi}} \frac{1}{t} e^{\frac{-t^{2}}{2}}
$$

Hint: Note that $\mathbb{P}(X \geq t) \leq \mathbb{E}\left(\frac{X}{t} \mathbf{1}_{\{X \geq t\}}\right)$.
(e) (4 points)Prove that if $X \sim N(0,1)$ and $t>0$

$$
\frac{1}{\sqrt{2 \pi}} \frac{t}{t^{2}+1} e^{\frac{-t^{2}}{2}} \leq P(X \geq t)
$$

Hint: Define $f(t)=P(X \geq t)-\frac{1}{\sqrt{2 \pi}} \frac{t}{t^{2}+1} e^{\frac{-t^{2}}{2}}$. Prove that $f(t)$ is decreasing and $\lim _{t \rightarrow \infty} f(t)=0$.

Solution

(a) Let $(\Omega, \mathcal{A} . \mathbb{P})$ be a probability space and $\left(A_{n}\right)_{n \in \mathbb{N}} \subseteq \mathcal{A}$. Recall that

$$
\limsup A_{n}=\bigcap_{k \in \mathbb{N}} \bigcup_{n \geq k} A_{n}
$$

Then we have that:
i. If $\sum_{n \in \mathbb{N}} \mathbb{P}\left(A_{n}\right)<\infty$ then $\mathbb{P}\left(\lim \sup A_{n}\right)=0$.
ii. If $\left(A_{n}\right)_{n \in \mathbb{N}}$ are independent and $\sum_{n \in \mathbb{N}} \mathbb{P}\left(A_{n}\right)=\infty$ then $\mathbb{P}\left(\lim \sup A_{n}\right)=1$.
(b) Let us compute for $\alpha>\sqrt{2}$

$$
\begin{aligned}
& \mathbb{P}\left(A_{n}^{\alpha}\right) \leq \frac{1}{\sqrt{2 a \pi}} \frac{1}{\sqrt{\log (n)}} \frac{1}{n^{\frac{\alpha^{2}}{2}}} \\
\Rightarrow & \sum_{n \in \mathbb{N}} \mathbb{P}\left(A_{n}\right) \leq \frac{1}{\alpha \sqrt{2 a \pi}} \sum_{n \in \mathbb{N}} \frac{1}{\sqrt{\log (n)}} \frac{1}{n^{\frac{\alpha^{2}}{2}}}<\infty
\end{aligned}
$$

Then thanks to Borel-Cantelli's Lemma (i) we have that $\mathbb{P}\left(\lim \sup A_{n}^{\alpha}\right)=0$, then

$$
\mathbb{P}\left(\bigcup_{\alpha>\sqrt{2}, \alpha \in \mathbb{Q}} \bigcap_{k \in \mathbb{N}} \bigcup_{n \geq k} A_{n}\right)=0
$$

The it's sufficient to show that:

$$
L:=\left\{\omega \in \Omega: \lim _{n} \sup \frac{X_{n}(\omega)}{\sqrt{\log n}}>\sqrt{2}\right\} \subseteq \bigcup_{\alpha>\sqrt{2}, \alpha \in \mathbb{Q}} \bigcap_{k \in \mathbb{N} n \geq k} \bigcup_{n} A_{n}
$$

Take $\omega \in L$, there exists $\sqrt{2}<\alpha \in \mathbb{Q}$ such that $\lim \sup \frac{X_{n}(\omega)}{\sqrt{\log n}}>\alpha$, thus, for all $k \in \mathbb{N}$ there exists $n \geq k$ such that $\frac{X_{n}(\omega)}{\sqrt{\log n}}<\alpha$. Then $\omega \in \bigcup_{\alpha>\sqrt{2}, \alpha \in \mathbb{Q}} \bigcap_{k \in \mathbb{N}} \bigcup_{n \geq k} A_{n}$.
(c) It's enough to prove that $\mathbb{P}\left(\lim \sup \frac{X_{n}}{\sqrt{\log n}} \geq \sqrt{2}\right)=1$. Let's compute

$$
\begin{aligned}
& \mathbb{P}\left(A_{n}^{\sqrt{2}}\right) \geq \frac{1}{\sqrt{\pi}} \frac{\sqrt{\log n}}{2 \log (n)+1} \frac{1}{n} \\
\Rightarrow & \sum_{n \in \mathbb{N}} \mathbb{P}\left(A_{n}\right) \geq \frac{1}{\sqrt{\pi}} \frac{\sqrt{\log n}}{2 \log (n)+1} \frac{1}{n}=\infty .
\end{aligned}
$$

Then, thanks to Borel-Cantelli's Lemma (ii) we have that $\mathbb{P}\left(\lim \sup A_{n}^{\sqrt{2}}\right)=1$. So it's sufficient to show that

$$
\bigcap_{k \in \mathbb{N}} \bigcup_{n \geq k} A_{n} \subseteq\left\{\omega \in \Omega: \limsup _{n} \frac{X_{n}(\omega)}{\sqrt{\log n}} \geq \sqrt{2}\right\}=: I
$$

Let $\omega \in \bigcap_{k \in \mathbb{N}} \bigcup_{n \geq k} A_{n}$, then for all $k \in \mathbb{N}$ there exists $n(\omega) \geq k$ such that $\frac{X_{n}(\omega)}{\sqrt{\log n}} \geq \sqrt{2}$, so $\lim \sup \frac{X_{n}(\omega)}{\sqrt{\log n}} \geq \sqrt{2}$, then $\omega \in L$. We have then that

$$
\mathbb{P}\left(\lim \sup \frac{X_{n}(\omega)}{\sqrt{\log n}}=\sqrt{2}\right)=\mathbb{P}\left(\lim \sup \frac{X_{n}(\omega)}{\sqrt{\log n}} \leq \sqrt{2}, \lim \sup \frac{X_{n}(\omega)}{\sqrt{\log n}} \geq \sqrt{2}\right)=1
$$

(d) Just computing

$$
\begin{aligned}
\mathbb{P}(X \geq t) & \leq \mathbb{E}\left(\mathbf{1}_{\{X \geq t\}} \frac{X}{t}\right) \\
& =\frac{1}{\sqrt{2 \pi} t} \int_{t}^{\infty} x e^{\frac{-x^{2}}{2}} d t \\
& =\left.\frac{1}{\sqrt{2 \pi} t}\left(-e^{\frac{-x^{2}}{2}}\right)\right|_{t} ^{\infty} \\
& =\frac{1}{\sqrt{2 \pi}} \frac{1}{t} e^{-\frac{t^{2}}{2}} .
\end{aligned}
$$

(e) We are going to follow the hint, we just have to prove that $f(t) \geq 0$. It's clear that $\lim _{t \rightarrow \infty} f(t)=0$. Let's prove that f is decreasing, we just have to compute its derivative:

$$
\begin{aligned}
f^{\prime}(t) & =\left(\frac{1}{\sqrt{2 \pi}} \int_{t}^{\infty} e^{-\frac{x^{2}}{2}} d x-\frac{1}{\sqrt{2 \pi}} \frac{t}{t^{2}+1} e^{-\frac{t^{2}}{2}}\right)^{\prime} \\
& =-\frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}}+\frac{1}{\sqrt{2 \pi}} \frac{t^{2}}{t^{2}+1} e^{-\frac{t^{2}}{2}}-\frac{1}{\sqrt{2 \pi}} \frac{1}{t^{2}+1} e^{-\frac{t^{2}}{2}}+\frac{1}{\sqrt{2 \pi}} \frac{2 t^{2}}{\left(t^{2}+1\right)^{2}} e^{-\frac{t^{2}}{2}} \\
& =-\frac{2 e^{-\frac{t^{2}}{2}}}{\sqrt{2 \pi}\left(t^{2}+1\right)^{2}}<0 .
\end{aligned}
$$

Then f is decreasing so $\lim _{t \rightarrow \infty} f(t)=\inf _{t \in(0, \infty)} f(t)=0$, thus, $f(t) \geq 0$.

