Lecturer: Prof. Dr. Sara van de Geer

Prof. Dr. Martin Larsson

Serie 10

May 11th, 2015
Let Y be a random variable. We say that Y is infinitely divisible if for all $n \in \mathbb{N}$ there exists $\left(\xi_{i}^{(n)}\right)_{i=1}^{n}$ i.i.d. so that

$$
\sum_{i=1}^{n} \xi_{i}^{(n)} \stackrel{D i s t}{=} Y
$$

Q1. We say that a random variable Y is bounded if there exists $M_{Y} \in \mathbb{R}$ such that $\mathbb{P}(|Y| \leq$ $\left.M_{Y}\right)=1$. We want to understand bounded infinitely divisible random variables.
(a) Prove that if Y is a constant (i.e. there exists $a \in \mathbb{R}$ so that $\mathbb{P}(X=a)=1)$ then Y is a bounded infinitely divisible random variable.
(b) Suppose that Y is bounded and infinitely divisible. Take $\xi_{i}^{(n)}$ i.i.d. such that $\sum_{i=1}^{n} \xi_{i}^{(n)}=$ Y, show that $\mathbb{P}\left(\left|\xi^{(n)}\right| \leq \frac{M_{Y}}{n}\right)=1$.
(c) Prove that Y is constant.

Hint: Prove that $\operatorname{Var}(Y)=0$.

Q2. Define $\phi_{Y}(\lambda):=\mathbb{E}\left(e^{i \lambda Y}\right)$ the characteristic function of Y. We want to understand the characteristic function of infinitely divisible random variables.
(a) Prove that if $Y \sim N\left(\mu, \sigma^{2}\right)$ the Y is infinitely divisible.
(b) Prove that Y is infinitely divisible iff for all n there exists $\phi_{n, Y}$, a characteristic function of a random variable, such that $\left(\phi_{n, Y}(\lambda)\right)^{n}=\phi_{Y}(\lambda)$.
(c) Prove that if Y is infinitely divisible and \tilde{Y} is an independent copy of Y, then $X:=Y-\tilde{Y}$ is infinitely divisible. Additionally, show that $0 \leq \phi_{X}(\lambda) \in \mathbb{R}$ for all $\lambda \in \mathbb{R}$.
(d) Prove that $\phi_{X}(\lambda)^{\frac{1}{n}}=\phi_{n, X}(\lambda)$.

Hint: It may be useful to prove that $0 \leq \phi_{n, X}(\lambda) \in \mathbb{R}$.
(e) Prove that for all $\lambda \in \mathbb{R}, \phi_{n, X}(\lambda) \rightarrow \psi(\lambda)$ a function that is continuous in a neighborhood of 0 .
(f) Prove that for all $\lambda \in \mathbb{R}, \Phi_{X}(\lambda) \neq 0$. Conclude that $\Phi_{Y}(\lambda) \neq 0$.

Q3. In this question we want to use the criteria of the question one and two to see whether a random variable is infinitely divisible or not.
(a) Let $Y \sim U(0,1)$ is it an infinitely divisible random variable?
(b) Let $\left(\eta_{i}\right)_{i \in \mathbb{N}}$ a sequence of i.i.d random variables. Take $N \sim P(\varsigma)$ independent of $\left(\eta_{i}\right)_{i \in \mathbb{N}}$. Compute, in terms of $\phi_{\eta_{1}}$, the characteristic function of $Y:=\sum_{i=1}^{N} \eta_{i}$. Is it an infinitely divisible random variable?
Remember that if $N \sim P(\varsigma)$

$$
\mathbb{P}(N=k)=e^{-\varsigma} \frac{\varsigma^{k}}{k!} \quad k \in \mathbb{N}
$$

