Prof. Dr. Martin Larsson

Serie 10

May 11th, 2015

Let Y be a random variable. We say that Y is infinitely divisible if for all $n \in \mathbb{N}$ there exists $(\xi_i^{(n)})_{i=1}^n$ i.i.d. so that

$$\sum_{i=1}^{n} \xi_i^{(n)} \stackrel{Dist}{=} Y.$$

- Q1. We say that a random variable Y is bounded if there exists $M_Y \in \mathbb{R}$ such that $\mathbb{P}(|Y| \leq M_Y) = 1$. We want to understand bounded infinitely divisible random variables.
 - (a) Prove that if Y is a constant (i.e. there exists $a \in \mathbb{R}$ so that $\mathbb{P}(X = a) = 1$) then Y is a bounded infinitely divisible random variable.
 - (b) Suppose that Y is bounded and infinitely divisible. Take $\xi_i^{(n)}$ i.i.d. such that $\sum_{i=1}^n \xi_i^{(n)} = Y$, show that $\mathbb{P}(|\xi^{(n)}| \leq \frac{M_Y}{n}) = 1$.
 - (c) Prove that Y is constant. Hint: Prove that Var(Y) = 0.
- **Q2.** Define $\phi_Y(\lambda) := \mathbb{E}(e^{i\lambda Y})$ the characteristic function of Y. We want to understand the characteristic function of infinitely divisible random variables.
 - (a) Prove that if $Y \sim N(\mu, \sigma^2)$ the Y is infinitely divisible.
 - (b) Prove that Y is infinitely divisible iff for all n there exists $\phi_{n,Y}$, a characteristic function of a random variable, such that $(\phi_{n,Y}(\lambda))^n = \phi_Y(\lambda)$.
 - (c) Prove that if Y is infinitely divisible and \tilde{Y} is an independent copy of Y, then $X := Y \tilde{Y}$ is infinitely divisible. Additionally, show that $0 \le \phi_X(\lambda) \in \mathbb{R}$ for all $\lambda \in \mathbb{R}$.
 - (d) Prove that $\phi_X(\lambda)^{\frac{1}{n}} = \phi_{n,X}(\lambda)$. **Hint:** It may be useful to prove that $0 \le \phi_{n,X}(\lambda) \in \mathbb{R}$.
 - (e) Prove that for all $\lambda \in \mathbb{R}$, $\phi_{n,X}(\lambda) \to \psi(\lambda)$ a function that is continuous in a neighborhood of 0.
 - (f) Prove that for all $\lambda \in \mathbb{R}$, $\Phi_X(\lambda) \neq 0$. Conclude that $\Phi_Y(\lambda) \neq 0$.
- Q3. In this question we want to use the criteria of the question one and two to see whether a random variable is infinitely divisible or not.
 - (a) Let $Y \sim U(0, 1)$ is it an infinitely divisible random variable?
 - (b) Let $(\eta_i)_{i\in\mathbb{N}}$ a sequence of i.i.d random variables. Take $N \sim P(\varsigma)$ independent of $(\eta_i)_{i\in\mathbb{N}}$. Compute, in terms of ϕ_{η_1} , the characteristic function of $Y := \sum_{i=1}^N \eta_i$. Is it an infinitely divisible random variable?

Remember that if $N \sim P(\varsigma)$

$$\mathbb{P}(N=k) = e^{-\varsigma} \frac{\varsigma^k}{k!} \quad k \in \mathbb{N}.$$