

ETH

Serie 7

April 21st, 2015

- **Q1.** Let X be a normal random variable.
 - (a) Prove that if we take $Y := X^2$, then $f_Y(y) = ce^{-\frac{y}{2}}\sqrt{y}\mathbf{1}_{\{y\geq 0\}}$ (We say that Y is distributed according to a χ -squared with one degree of freedom).
 - (b) If Y_1 and Y_2 are two independent copies of Y, prove that $f_{Y_1+Y_2} = c_2 e^{-\frac{x}{2}} \mathbf{1}_{\{x \ge 0\}}$. What is the name of this distribution.
 - (c) With the help of induction prove that $\sum_{i=1}^{n} Y_i$, where $(Y_i)_{i=1}^{n}$ are independent copies of Y, has as a density function

$$f_{\sum_{i=1}^{n} Y_i}(x) = c_n x \frac{n}{2} - 1e^{-\frac{x}{2}} \mathbf{1}_{\{x \ge 0\}}.$$

This is call a χ -squared distribution with n degrees of freedom.

- **Q2.** Take the following probability space $(\Omega, \mathcal{A}, \mathbb{P}) = ([0, 1], \mathcal{B}([0, 1]), \lambda |_{[0,1]})$, where $\lambda |_{[0,1]}$ is the Lebesgue measure over [0, 1]. Let $X_n(\omega) = \mathbf{1}_{A_n}(\omega)$ a sequence of random variables with $A_n \in \mathcal{B}([0, 1])$.
 - (a) Under which condition for $(A_n)_{n \in \mathbb{N}}$ we have that $X_n \xrightarrow{\mathbb{P}} 0$.
 - (b) Write the event $\{\omega : X_n(\omega) \to 0\}$ with help of the sets $(A_n)_{n \in \mathbb{N}}$.
 - (c) Find a sequence $(A_n)_{n \in \mathbb{N}}$ of events so that $X_n \xrightarrow{\mathbb{P}} 0$ but $\{\omega : X_n(\omega) \to 0\} = \emptyset$.
- **Q3.** Let $(X_i)_{i\geq 1}$ be a sequence of random variables with

$$\mathbb{E} (X_i) = \mu \quad \forall i,$$

$$Var(X_i) = \sigma^2 < \infty \quad \forall i,$$

$$Cov(X_i, X_j) = R(|i - j|) \quad \forall i, j.$$

Define $S_n := \sum_{i=1}^n X_i$.

- (a) Prove that if $\lim_{k\to\infty} R(k) = 0$ then $\lim_{n\to\infty} \frac{S_n}{n} = \mu$ in probability.
- (b) Prove that if $\sum_{k \in \mathbb{N}} |R(k)| < \infty$ then $\lim_{n \to \infty} n Var(\frac{S_n}{n})$ exists.
- Q4. Compute the limit of $\lim_{n\to\infty} e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!}$ **Hint:** You can use the central limit theorem (Skript Theorem 4.3) for $(X_i)_{i\in\mathbb{N}}$ i.d.d. random variables such that $X_i \sim Poi(1)$.