Prof. Dr. Martin Larsson

ETH

Serie 10

May 11th, 2015

Let Y be a random variable. We say that Y is infinitely divisible if for all $n \in \mathbb{N}$ there exists $(\xi_i^{(n)})_{i=1}^n$ i.i.d. so that

$$\sum_{i=1}^{n} \xi_i^{(n)} \stackrel{Dist}{=} Y.$$

- Q1. We say that a random variable Y is bounded if there exists $M_Y \in \mathbb{R}$ such that $\mathbb{P}(|Y| \leq M_Y) = 1$. We want to understand bounded infinitely divisible random variables.
 - (a) Prove that if Y is a constant (i.e. there exists $a \in \mathbb{R}$ so that $\mathbb{P}(X = a) = 1$) then Y is a bounded infinitely divisible random variable.
 - (b) Suppose that Y is bounded and infinitely divisible. Take $\xi_i^{(n)}$ i.i.d. such that $\sum_{i=1}^n \xi_i^{(n)} = Y$, show that $\mathbb{P}(|\xi^{(n)}| \leq \frac{M_Y}{n}) = 1$.
 - (c) Prove that Y is constant. Hint: Prove that Var(Y) = 0.

Solution:

- (a) Take $a \in \mathbb{R}$ so that $\mathbb{P}(Y = a) = 1$. For $n \in \mathbb{N}$ take $(\xi_i^{(n)})$ such that $\mathbb{P}(\xi_i^{(n)} = \frac{a}{n}) = 1$. Then, it's clear that $\sum_{i=1}^n \xi_i = Y$.
- (b) Suppose that $\mathbb{P}(|\xi_1^{(n)}| > \frac{M_y}{n}) \neq 0$, then that means that there exists an $\epsilon > 0$, so that $\mathbb{P}\left(|\xi_1^{(n)}| \ge \frac{M_y}{n} + \epsilon\right) \neq 0$. Without lost of generality $\mathbb{P}(\xi_1^{(n)} \ge \frac{M_y}{n} + \epsilon) = c > 0$. Then we have that

$$\mathbb{P}(Y \ge M_Y + n\epsilon) \ge \mathbb{P}\left(\bigcap_{i=1}^n \{\xi_i^{(n)} \ge \frac{M_y}{n} + \epsilon\}\right) = c^n > 0,$$

what is a contradiction.

(c) Note that

$$Var\left(\xi_{1}^{(n)}\right) = \mathbb{E}\left(\left(\xi_{1}^{(n)}\right)^{2}\right) - \mathbb{E}\left(\xi_{1}^{(n)}\right)^{2}$$
$$\leq \mathbb{E}\left(\left(\xi_{1}^{(n)}\right)^{2}\right)$$
$$\leq \frac{M_{Y}^{2}}{n^{2}},$$

then, thanks to the independence of $\left(\xi_i^{(n)}\right)_{n\in\mathbb{N}}$

$$Var(Y) = \sum_{i=1}^{n} Var(\xi_i^{(n)}) \le n \frac{M^2}{n^2} \to 0.$$

so Var(Y) = 0. That means that $\mathbb{E}((Y - \mathbb{E}(Y))^2) = 0$, thus $\mathbb{P}(Y - \mathbb{E}(Y) = 0) = 1$.

- **Q2.** Define $\phi_Y(\lambda) := \mathbb{E}(e^{i\lambda Y})$ the characteristic function of Y. We want to understand the characteristic function of infinitely divisible random variables.
 - (a) Prove that if $Y \sim N(\mu, \sigma^2)$ the Y is infinitely divisible.
 - (b) Prove that Y is infinitely divisible iff for all n there exists $\phi_{n,Y}$, a characteristic function of a random variable, such that $(\phi_{n,Y}(\lambda))^n = \phi_Y(\lambda)$.
 - (c) Prove that if Y is infinitely divisible and \tilde{Y} is an independent copy of Y, then $X := Y \tilde{Y}$ is infinitely divisible. Additionally, show that $0 \le \phi_X(\lambda) \in \mathbb{R}$ for all $\lambda \in \mathbb{R}$.
 - (d) Prove that $\phi_X(\lambda)^{\frac{1}{n}} = \phi_{n,X}(\lambda)$. **Hint:** It may be useful to prove that $0 \le \phi_{n,X}(\lambda) \in \mathbb{R}$.
 - (e) Prove that for all $\lambda \in \mathbb{R}$, $\phi_{n,X}(\lambda) \to \psi(\lambda)$ a function that is continuous in a neighborhood of 0.
 - (f) Prove that for all $\lambda \in \mathbb{R}$, $\Phi_X(\lambda) \neq 0$. Conclude that $\Phi_Y(\lambda) \neq 0$.

Solution:

- (a) Given $n \in \mathbb{N}$ take $\xi_i^{(n)} \sim N\left(\frac{\mu}{n}, \frac{\sigma^2}{n}\right)$. Then, thanks to the independence of $(\xi_i(n))_{i=1}^n$, $\sum_{i=1}^n \xi_i^{(n)} \sim N(\mu, \sigma^2)$.
- (b) \Rightarrow If Y is infinitely divisible then for all $n \in \mathbb{N}$ there exists $(\xi_i^{(n)})_{i=1}^n$ i.i.d. So that

$$\sum_{i=1}^{n} \xi_i^{(n)} \stackrel{Dist}{=} Y$$

Thus, thanks to the independence

$$\phi_Y(\lambda) = \mathbb{E}\left(e^{i\lambda Y}\right)$$
$$= \mathbb{E}\left(e^{i\lambda\sum_{i=1}^n \xi_i^{(n)}}\right)$$
$$= \prod_{i=1}^n \mathbb{E}\left(e^{i\lambda\xi_1^{(n)}}\right)$$
$$= (\phi_{\xi_1^{(n)}}(\lambda))^n.$$

 \leftarrow If $\phi_Y(\lambda) = \phi_{n,Y}(\lambda)^n$ and $\phi_{n,Y}$ is the characteristic function of ξ . Take $(\xi_i)_{i=1}^n$, n independent copies of ξ . We have, by the same calculations than before,

$$\phi_{\sum_{i=1}^{n}\xi_{i}}(\lambda) = \left(\phi_{\xi_{1}^{(n)}}(\lambda)\right)^{n} = \phi_{Y}$$

Because their characteristic function are equal we have that $\sum_{i=1}^{n} \xi_i \stackrel{dist}{=} Y$.

(c) Take $n \in \mathbb{N}$ and $(\xi_i^{(n)})_{i=1}^n$ i.i.d such that $\sum_{i=1}^n \xi_i^{(n)} = Y$ and $(\tilde{\xi}_i^{(n)})_{i=1}^n$ and independent copy of $(\xi_i^{(n)})_{i=1}^n$, then $X = \sum_{i=1}^n \xi_i^{(n)} - \tilde{\xi}_i^{(n)} \stackrel{Dist}{=} Y - \tilde{Y}$. So X is infinitely divisible. Then its characteristic function is given by

$$\phi_x(\lambda) = \mathbb{E}\left(e^{i\lambda(Y-\tilde{Y})}\right)$$
$$= \mathbb{E}\left(e^{i\lambda Y}\right)\mathbb{E}\left(e^{-\lambda\tilde{Y}}\right)$$
$$= \phi_Y(\lambda)\overline{\phi_Y(\lambda)} = \|\phi_Y(\lambda)\|^2 \ge 0$$

(d) We know that $(\phi_{n,X}(\lambda))^n = \phi_X(\lambda)$, then $\phi_{n,X}(\lambda) = \phi_X(\lambda)^{\frac{1}{n}} e^{\frac{2ik\pi}{n}}$. But

$$\phi_{n,X}(\lambda) = \mathbb{E}\left(e^{i\lambda\xi_1^{(n)} - \tilde{\xi}_1^n}\right) = \|\phi_{\xi_1^{(n)}}\|^2 \ge 0,$$

then $\phi_{n,X}(\lambda) = \phi_X(\lambda)^{\frac{1}{n}}$.

- (e) Given that $0 \le \phi_X(\lambda) \le 1$ we have that $\phi_X(\lambda)^{\frac{1}{n}} \to \mathbf{1}_{\{\phi_X(\lambda)\neq 0\}}$. Given that $\phi_X(0) = 1$ and ϕ_X is continuous, we have that there exists $\epsilon > 0$ so that for all $|\lambda| < \epsilon \mathbf{1}_{\{\phi_X(\lambda)\neq 0\}} = 1$. Then the limit function is continuous in a neighborhood of 0.
- (f) Thanks to Lévy's Theorem that ψ is the characteristic function of a random variable ξ . Then we have that $\mathbb{E}(\xi) = -i\psi'(0) = 0$ and that $\mathbb{E}(\xi^2) = \psi''(0) = 0$, so $\mathbb{P}(\xi = 0) = 1$, then

$$\mathbf{1}_{\{\psi_X(\lambda)\neq 0\}} = \psi(\lambda) = \phi_{\xi}(\lambda) = 1,$$

so $\psi_X(\lambda) \neq 0$ for all $\lambda > 0$. Note that $\psi_X = \|\psi_Y(\lambda)\|^2$, given that the left one is never 0 we have that for all $\lambda \in \mathbb{R}$, $\psi_Y(\lambda) \neq 0$.

- Q3. In this question we want to use the criteria of the question one and two to see whether a random variable is infinitely divisible or not.
 - (a) Let $Y \sim U(0, 1)$ is it an infinitely divisible random variable?
 - (b) Let $(\eta_i)_{i \in \mathbb{N}}$ a sequence of i.i.d random variables. Take $N \sim P(\varsigma)$ independent of $(\eta_i)_{i \in \mathbb{N}}$. Compute, in terms of ϕ_{η_1} , the characteristic function of $Y := \sum_{i=1}^N \eta_i$. Is it an infinitely divisible random variable? Remember that if $N \sim P(\varsigma)$

$$\mathbb{P}(N=k) = e^{-\varsigma} \frac{\varsigma^k}{k!} \quad k \in \mathbb{N}.$$

Solution:

- (a) Given that Y is bounded and it's not constant, it's not an infinitely divisible random variable.
- (b) Computing

$$\phi_{Y}(\lambda) = \mathbb{E}\left(e^{i\lambda\sum_{i=1}^{N}\eta_{i}}\right)$$

$$= \sum_{n=0}^{\infty} \mathbb{E}\left(\mathbf{1}_{\{N=n\}}\exp\left(\lambda i\sum_{k=1}^{n}\eta_{k}\right)\right)$$

$$= \sum_{n=0}^{\infty} \mathbb{P}(N=n)\mathbb{E}\left(\exp\left(\lambda i\sum_{k=1}^{n}\eta_{k}\right)\right)$$

$$= \sum_{n=0}^{\infty}e^{-\varsigma}\frac{\varsigma^{n}}{n!}\mathbb{E}\left(\exp\left(i\lambda\eta_{1}\right)\right)^{n}$$

$$= e^{-\varsigma}\sum_{n=0}^{\infty}\frac{(\varsigma\phi_{\eta_{1}}(\lambda))^{n}}{n!}$$

$$= \exp\left(-\varsigma\left(1-\phi_{\eta_{1}}(\lambda)\right)\right).$$

ETH