Lecturer: Prof. Dr. Sara van de Geer

Serie 10

May 11th, 2015
Let Y be a random variable. We say that Y is infinitely divisible if for all $n \in \mathbb{N}$ there exists $\left(\xi_{i}^{(n)}\right)_{i=1}^{n}$ i.i.d. so that

$$
\sum_{i=1}^{n} \xi_{i}^{(n)} \stackrel{D i s t}{=} Y
$$

Q1. We say that a random variable Y is bounded if there exists $M_{Y} \in \mathbb{R}$ such that $\mathbb{P}(|Y| \leq$ $\left.M_{Y}\right)=1$. We want to understand bounded infinitely divisible random variables.
(a) Prove that if Y is a constant (i.e. there exists $a \in \mathbb{R}$ so that $\mathbb{P}(X=a)=1)$ then Y is a bounded infinitely divisible random variable.
(b) Suppose that Y is bounded and infinitely divisible. Take $\xi_{i}^{(n)}$ i.i.d. such that $\sum_{i=1}^{n} \xi_{i}^{(n)}=$ Y, show that $\mathbb{P}\left(\left|\xi^{(n)}\right| \leq \frac{M_{Y}}{n}\right)=1$.
(c) Prove that Y is constant.

Hint: Prove that $\operatorname{Var}(Y)=0$.

Solution:

(a) Take $a \in \mathbb{R}$ so that $\mathbb{P}(Y=a)=1$. For $n \in \mathbb{N}$ take $\left(\xi_{i}^{(n)}\right)$ such that $\mathbb{P}\left(\xi_{i}^{(n)}=\frac{a}{n}\right)=1$. Then, it's clear that $\sum_{i=1}^{n} \xi_{i}=Y$.
(b) Suppose that $\mathbb{P}\left(\left|\xi_{1}^{(n)}\right|>\frac{M_{y}}{n}\right) \neq 0$, then that means that there exists an $\epsilon>0$, so that $\mathbb{P}\left(\left|\xi_{1}^{(n)}\right| \geq \frac{M_{y}}{n}+\epsilon\right) \neq 0$. Without lost of generality $\mathbb{P}\left(\xi_{1}^{(n)} \geq \frac{M_{y}}{n}+\epsilon\right)=c>0$. Then we have that

$$
\mathbb{P}\left(Y \geq M_{Y}+n \epsilon\right) \geq \mathbb{P}\left(\bigcap_{i=1}^{n}\left\{\xi_{i}^{(n)} \geq \frac{M_{y}}{n}+\epsilon\right\}\right)=c^{n}>0
$$

what is a contradiction.
(c) Note that

$$
\begin{aligned}
\operatorname{Var}\left(\xi_{1}^{(n)}\right) & =\mathbb{E}\left(\left(\xi_{1}^{(n)}\right)^{2}\right)-\mathbb{E}\left(\xi_{1}^{(n)}\right)^{2} \\
& \leq \mathbb{E}\left(\left(\xi_{1}^{(n)}\right)^{2}\right) \\
& \leq \frac{M_{Y}^{2}}{n^{2}}
\end{aligned}
$$

then, thanks to the independence of $\left(\xi_{i}^{(n)}\right)_{n \in \mathbb{N}}$

$$
\operatorname{Var}(Y)=\sum_{i=1}^{n} \operatorname{Var}\left(\xi_{i}^{(n)}\right) \leq n \frac{M^{2}}{n^{2}} \rightarrow 0,
$$

so $\operatorname{Var}(Y)=0$. That means that $\mathbb{E}\left((Y-\mathbb{E}(Y))^{2}\right)=0$, thus $\mathbb{P}(Y-\mathbb{E}(Y)=0)=1$.

Q2. Define $\phi_{Y}(\lambda):=\mathbb{E}\left(e^{i \lambda Y}\right)$ the characteristic function of Y. We want to understand the characteristic function of infinitely divisible random variables.
(a) Prove that if $Y \sim N\left(\mu, \sigma^{2}\right)$ the Y is infinitely divisible.
(b) Prove that Y is infinitely divisible iff for all n there exists $\phi_{n, Y}$, a characteristic function of a random variable, such that $\left(\phi_{n, Y}(\lambda)\right)^{n}=\phi_{Y}(\lambda)$.
(c) Prove that if Y is infinitely divisible and \tilde{Y} is an independent copy of Y, then $X:=Y-\tilde{Y}$ is infinitely divisible. Additionally, show that $0 \leq \phi_{X}(\lambda) \in \mathbb{R}$ for all $\lambda \in \mathbb{R}$.
(d) Prove that $\phi_{X}(\lambda)^{\frac{1}{n}}=\phi_{n, X}(\lambda)$.

Hint: It may be useful to prove that $0 \leq \phi_{n, X}(\lambda) \in \mathbb{R}$.
(e) Prove that for all $\lambda \in \mathbb{R}, \phi_{n, X}(\lambda) \rightarrow \psi(\lambda)$ a function that is continuous in a neighborhood of 0 .
(f) Prove that for all $\lambda \in \mathbb{R}, \Phi_{X}(\lambda) \neq 0$. Conclude that $\Phi_{Y}(\lambda) \neq 0$.

Solution:

(a) Given $n \in \mathbb{N}$ take $\xi_{i}^{(n)} \sim N\left(\frac{\mu}{n}, \frac{\sigma^{2}}{n}\right)$. Then, thanks to the independence of $\left(\xi_{i}(n)\right)_{i=1}^{n}$, $\sum_{i=1}^{n} \xi_{i}^{(n)} \sim N\left(\mu, \sigma^{2}\right)$.
(b) \Rightarrow If Y is infinitely divisible then for all $n \in \mathbb{N}$ there exists $\left(\xi_{i}^{(n)}\right)_{i=1}^{n}$ i.i.d. So that

$$
\sum_{i=1}^{n} \xi_{i}^{(n)} \stackrel{D i s t}{=} Y
$$

Thus, thanks to the independence

$$
\begin{aligned}
\phi_{Y}(\lambda) & =\mathbb{E}\left(e^{i \lambda Y}\right) \\
& =\mathbb{E}\left(e^{i \lambda \sum_{i=1}^{n} \xi_{i}^{(n)}}\right) \\
& =\prod_{i=1}^{n} \mathbb{E}\left(e^{i \lambda \xi_{1}^{(n)}}\right) \\
& =\left(\phi_{\xi_{1}^{(n)}}(\lambda)\right)^{n} .
\end{aligned}
$$

\Leftarrow If $\phi_{Y}(\lambda)=\phi_{n, Y}(\lambda)^{n}$ and $\phi_{n, Y}$ is the characteristic function of ξ. Take $\left(\xi_{i}\right)_{i=1}^{n}, n$ independent copies of ξ. We have, by the same calculations than before,

$$
\phi_{\sum_{i=1}^{n} \xi_{i}}(\lambda)=\left(\phi_{\xi_{1}^{(n)}}(\lambda)\right)^{n}=\phi_{Y}
$$

Because their characteristic function are equal we have that $\sum_{i=1}^{n} \xi_{i} \stackrel{\text { dist }}{=} Y$.
(c) Take $n \in \mathbb{N}$ and $\left(\xi_{i}^{(n)}\right)_{i=1}^{n}$ i.i.d such that $\sum_{i=1}^{n} \xi_{i}^{(n)}=Y$ and $\left(\tilde{\xi}_{i}^{(n)}\right)_{i=1}^{n}$ and independent copy of $\left(\xi_{i}^{(n)}\right)_{i=1}^{n}$, then $X=\sum_{i=1}^{n} \xi_{i}^{(n)}-\tilde{\xi}_{i}^{(n)} \stackrel{D i s t}{=} Y-\tilde{Y}$. So X is infinitely divisible. Then its characteristic function is given by

$$
\begin{aligned}
\phi_{x}(\lambda) & =\mathbb{E}\left(e^{i \lambda(Y-\tilde{Y})}\right) \\
& =\mathbb{E}\left(e^{i \lambda Y}\right) \mathbb{E}\left(e^{-\lambda \tilde{Y}}\right) \\
& =\phi_{Y}(\lambda) \overline{\phi_{Y}(\lambda)}=\left\|\phi_{Y}(\lambda)\right\|^{2} \geq 0
\end{aligned}
$$

(d) We know that $\left(\phi_{n, X}(\lambda)\right)^{n}=\phi_{X}(\lambda)$, then $\phi_{n, X}(\lambda)=\phi_{X}(\lambda)^{\frac{1}{n}} e^{\frac{2 i k \pi}{n}}$. But

$$
\phi_{n, X}(\lambda)=\mathbb{E}\left(e^{i \lambda \xi_{1}^{(n)}-\tilde{\xi}_{1}^{n}}\right)=\left\|\phi_{\xi_{1}^{(n)}}\right\|^{2} \geq 0
$$

then $\phi_{n, X}(\lambda)=\phi_{X}(\lambda)^{\frac{1}{n}}$.
(e) Given that $0 \leq \phi_{X}(\lambda) \leq 1$ we have that $\phi_{X}(\lambda)^{\frac{1}{n}} \rightarrow \mathbf{1}_{\left\{\phi_{X}(\lambda) \neq 0\right\}}$. Given that $\phi_{X}(0)=1$ and ϕ_{X} is continuous, we have that there exists $\epsilon>0$ so that for all $|\lambda|<\epsilon \mathbf{1}_{\left\{\phi_{X}(\lambda) \neq 0\right\}}=1$. Then the limit function is continuous in a neighborhood of 0 .
(f) Thanks to Lévy's Theorem that ψ is the characteristic function of a random variable ξ. Then we have that $\mathbb{E}(\xi)=-i \psi^{\prime}(0)=0$ and that $\mathbb{E}\left(\xi^{2}\right)=\psi^{\prime \prime}(0)=0$, so $\mathbb{P}(\xi=0)=1$, then

$$
\mathbf{1}_{\left\{\psi_{X}(\lambda) \neq 0\right\}}=\psi(\lambda)=\phi_{\xi}(\lambda)=1
$$

so $\psi_{X}(\lambda) \neq 0$ for all $\lambda>0$. Note that $\psi_{X}=\left\|\psi_{Y}(\lambda)\right\|^{2}$, given that the left one is never 0 we have that for all $\lambda \in \mathbb{R}, \psi_{Y}(\lambda) \neq 0$.

Q3. In this question we want to use the criteria of the question one and two to see whether a random variable is infinitely divisible or not.
(a) Let $Y \sim U(0,1)$ is it an infinitely divisible random variable?
(b) Let $\left(\eta_{i}\right)_{i \in \mathbb{N}}$ a sequence of i.i.d random variables. Take $N \sim P(\varsigma)$ independent of $\left(\eta_{i}\right)_{i \in \mathbb{N}}$. Compute, in terms of $\phi_{\eta_{1}}$, the characteristic function of $Y:=\sum_{i=1}^{N} \eta_{i}$. Is it an infinitely divisible random variable?
Remember that if $N \sim P(\varsigma)$

$$
\mathbb{P}(N=k)=e^{-\varsigma} \frac{\varsigma^{k}}{k!} \quad k \in \mathbb{N}
$$

Solution:

(a) Given that Y is bounded and it's not constant, it's not an infinitely divisible random variable.
(b) Computing

$$
\begin{aligned}
\phi_{Y}(\lambda) & =\mathbb{E}\left(e^{i \lambda \sum_{i=1}^{N} \eta_{i}}\right) \\
& =\sum_{n=0}^{\infty} \mathbb{E}\left(\mathbf{1}_{\{N=n\}} \exp \left(\lambda i \sum_{k=1}^{n} \eta_{k}\right)\right) \\
& =\sum_{n=0}^{\infty} \mathbb{P}(N=n) \mathbb{E}\left(\exp \left(\lambda i \sum_{k=1}^{n} \eta_{k}\right)\right) \\
& =\sum_{n=0}^{\infty} e^{-\varsigma} \frac{\varsigma^{n}}{n!} \mathbb{E}\left(\exp \left(i \lambda \eta_{1}\right)\right)^{n} \\
& =e^{-\varsigma} \sum_{n=0}^{\infty} \frac{\left(\varsigma \phi_{\eta_{1}}(\lambda)\right)^{n}}{n!} \\
& =e^{-\varsigma} \exp \left(\varsigma \phi_{\eta_{1}}(\lambda)\right) \\
& =\exp \left(-\varsigma\left(1-\phi_{\eta_{1}}(\lambda)\right)\right) .
\end{aligned}
$$

It's clear that for all $n \in \mathbb{N}$, we have that $\phi_{Y, n}=\exp \left(-\frac{\varsigma}{n}\left(1-\phi_{\eta_{1}}(\lambda)\right)\right)$, is the characteristic function of $\tilde{Y}:=\sum_{i=1}^{\tilde{N}} \eta_{i}$, where $\tilde{N} \sim P\left(\frac{\varsigma}{n}\right)$. Then, Y is an infinitely divisible random variable.

