Lecturer: Prof. Dr. Sara van de Geer

Serie 6

March 30th, 2015
Q1. Memorylessness of exponential random variable. We say that a random variable X has an exponential distribution of parameter $\lambda(\mathcal{E}(\lambda))$ if for all $t \geq 0$:

$$
\mathbb{P}(X \geq t)=e^{-\lambda t}
$$

(a) Find the density function (with respect to the Lebesgue Measure) of an exponential random variable. Calculate its mean and its variance.
(b) Show that if $X_{1} \sim \mathcal{E}\left(\lambda_{1}\right), X_{2} \sim \mathcal{E}\left(\lambda_{2}\right)$ and $X_{1} \perp X_{2}$, then $\min \left\{X_{1}, X_{2}\right\} \sim \mathcal{E}\left(\lambda_{1}+\lambda_{2}\right)$.
(c) Show that

$$
\mathbb{P}(X \geq t+h \mid X \geq h)=\mathbb{P}(X \geq t)
$$

This property is called memorylessness. We want to prove that the only random variable that has the memorylessness property is the exponential random variable. Suppose that $Y: \Omega \mapsto \mathbb{R}^{+}$has the memorylessness property, i.e.,

$$
\mathbb{P}(Y \geq t+h \mid Y \geq h)=\mathbb{P}(X \geq t)
$$

(d) Define $G(t):=\mathbb{P}(Y \geq t)$ and prove that $G(t+h)=G(t) G(h)$.
(e) Prove that for all $m, n \in \mathbb{N}, G\left(\frac{m}{n}\right)=G(1)^{\frac{m}{n}}$.
(f) Using the monotone property of G prove that for all $t \geq 0 G(t)=G(1)^{t}$. Conclude that Y has an exponential distribution and make explicit the parameter.

Solution

(a) To find the density we just have to derive the CDF

$$
F(t):=\mathbb{P}(X \leq t)=1-\mathbb{P}(X \geq t)=1-e^{-\lambda t}
$$

Then its density is

$$
f(t):=F^{\prime}(t)=\lambda e^{-\lambda t}
$$

We can calculate its mean as

$$
\begin{aligned}
\mathbb{E}(X) & =\int_{0}^{\infty} t \lambda e^{-\lambda t} d t \\
& =-\left.t e^{-\lambda t}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-\lambda t} d t \\
& =\frac{1}{\lambda}
\end{aligned}
$$

Then its second moment is

$$
\begin{aligned}
\mathbb{E}\left(X^{2}\right) & =\int_{0}^{\infty} \lambda t^{2} e^{-\lambda t} d t \\
& =-\left.t^{2} e^{-\lambda t}\right|_{0} ^{\infty}+2 \int_{0}^{\infty} t e^{-\lambda t} d t \\
& =\frac{2}{\lambda^{2}}
\end{aligned}
$$

In conclusion

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}=\frac{1}{\lambda^{2}}
$$

(b) We just have to compute

$$
\begin{aligned}
\mathbb{P}\left(\min \left\{X_{1}, X_{2}\right\}>t\right) & =\mathbb{P}\left(X_{1}>t, X_{2}>t\right) \\
& =\mathbb{P}\left(X_{1}>t\right) \mathbb{P}\left(X_{2}>t\right) \\
& =e^{-\lambda_{1} t} e^{-\lambda_{2} t} \\
& =e^{-\left(\lambda_{1}+\lambda_{2}\right) t} .
\end{aligned}
$$

This is the definition of $\min \left\{X_{1}, X_{2}\right\} \sim \mathcal{E}\left(\lambda_{1}+\lambda_{2}\right)$.
(c) We just have to compute

$$
\mathbb{P}(Y \geq t+h \mid Y \geq h)=\frac{\mathbb{P}(Y \geq t+h)}{\mathbb{P}(Y \geq h)}=e^{\lambda t}=\mathbb{P}(Y \geq t)
$$

(d) We have to compute

$$
\begin{aligned}
G(t+h) & =\mathbb{P}(Y \geq t+h) \\
& =\frac{\mathbb{P}(Y \geq t+h)}{\mathbb{P}(Y \geq h)} \mathbb{P}(Y \geq h) \\
& =\mathbb{P}(Y \geq t+h \mid Y \geq h) \mathbb{P}(Y \geq h) \\
& =G(t) G(h)
\end{aligned}
$$

(e) First we will prove by induction that for all $n \in \mathbb{N}$ and $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ we have that $G\left(\sum_{i=1}^{n} a_{i}\right)=\prod_{i=1}^{n} G\left(a_{i}\right)$. It's clear when $n=1$, then assuming it's true for n

$$
G\left(\sum_{i=1}^{n+1} a_{i}\right)=G\left(a_{n+1}\right) G\left(\sum_{i=1}^{n} a_{n}\right)=\prod_{i=1}^{n+1} G\left(a_{i}\right) .
$$

Take $m, n \in \mathbb{N}$, we have that

$$
\begin{aligned}
G(1)^{m} & =G\left(\sum_{i=1}^{m} 1\right)=G\left(\sum_{i=1}^{n} \frac{m}{n}\right)=G\left(\frac{m}{n}\right)^{n} \\
\Rightarrow G(1)^{\frac{m}{n}} & =G\left(\frac{m}{n}\right)
\end{aligned}
$$

(f) Finally, take $t \in \mathbb{R}^{+}$and $\left(t_{n}\right)_{n \in \mathbb{N}},\left(s_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{Q}$ so that $t_{n} \nearrow t$ and $s_{n} \searrow t$. Then thanks to the monotonicity of $G(t)$

$$
\begin{aligned}
& G\left(t_{n}\right) \leq G(t) \leq G\left(s_{n}\right) \\
\Rightarrow & G(1)^{t_{n}} \leq G(t) \leq G(1)^{s_{n}} \\
\Rightarrow & G(t)=G(1)^{t}
\end{aligned}
$$

Finally we have that $\mathbb{P}(Y \geq t)=G(1)^{t}=e^{-\ln \left(\frac{1}{G(1)}\right) t}$, then $Y \sim \mathcal{E}\left(\ln \left(\frac{1}{G(1)}\right)\right)$.

Q2. Borel Cantelli

(a) Construct a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and a series of measurable sets $\left(A_{n}\right)_{n \in \mathbb{N}}$ with $\sum_{n \in \mathbb{N}} \mathbb{P}\left(A_{n}\right)=\infty$ and $\mathbb{P}\left(\bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_{k}\right)=0$.
(b) Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Take $\left(U_{n}\right)_{n \in \mathbb{N}}$ a series of uniform independent random variables on $(0,1)$, i.e., for $0 \leq x \leq 1, \mathbb{P}\left(U_{n} \in[0, x]\right)=x$.
i. Show that:

$$
\mathbb{P}\left((\exists \alpha>1) \lim \inf n^{\alpha} U_{n} \in \mathbb{R}\right)=0
$$

Hint: It may be useful to define, for $\alpha>1 A_{n}^{\alpha}:=\left\{U_{n}<n^{-\alpha}\right\}$. Do not forget that the countable union of sets of probability 0 has probability 0 .
ii. Prove that:

$$
\mathbb{P}\left(\lim \inf n U_{n} \in \mathbb{R}\right)>0
$$

Solution

(a) Take $([0,1], \mathcal{B}(0,1), \lambda)$ as a probability space and U the identity function. U is distributed as an uniform random variable on $(0,1)$. Define $A_{n}:=\{x \in(0,1): U(x) \in$ $\left.\left[0, \frac{1}{n}\right]\right\}$. Then we have that $\mathbb{P}\left(A_{n}\right)=\frac{1}{n}$, so $\sum_{n \in \mathbb{N}} \mathbb{P}\left(A_{n}\right)=\infty$. Additionally $x \in$ $\bigcap_{n \in \mathbb{N}} \bigcup_{k \geq 0} A_{k}$ iff $x=0$, so $\mathbb{P}\left(\bigcap_{n \in \mathbb{N}} \bigcup_{k \geq 0} A_{k}\right)=0$.
(b) i. We will use Borel-Cantelli 1) (Skript Lemma 3.1 p. 36). Define $A_{n}^{\alpha}:=\left\{U_{n}<n^{-\alpha}\right\}$, then:

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}^{\alpha}\right)=\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}<\infty
$$

so $\mathbb{P}\left(\bigcap_{n \in \mathbb{N}} \bigcup_{j \geq n} A_{j}^{\alpha}\right)=0$. Thus

$$
\mathbb{P}\left(\bigcup_{\substack{\alpha>1 \\ \alpha \in \mathbb{Q}}} \bigcap_{n \in \mathbb{N}} \bigcup_{j \geq n} A_{j}^{\alpha}\right)=0
$$

Let $\omega \in \Omega$ so that there exists $\alpha(\omega)$ for which $\lim \inf n^{\alpha(\omega)} U_{n}(\omega)<\infty$. Then take $1<\tilde{\alpha}(\omega)<\alpha(\omega)$ with $\tilde{\alpha}(\omega) \in \mathbb{Q}$. We have that $\lim \inf n^{\tilde{\alpha}(\omega)} U_{n}(\omega)=0$. Then for all
$n \in \mathbb{N}$ there exists $m(\omega)>n$ so that $m^{\tilde{\alpha}} U_{m}(\omega)<1$. Thus, $\omega \in \bigcup_{\alpha>\mathbb{Q}}^{\alpha>1} \bigcap_{n \in \mathbb{N}} \bigcup_{j \geq n} A_{j}^{\alpha}$. Finally we have that

$$
\begin{aligned}
& \left\{(\exists \alpha>1) \lim \inf n^{\alpha} U_{n} \in \mathbb{R}\right\} \subseteq \bigcup_{\substack{\alpha>1 \\
\alpha \in \mathbb{Q}}} \bigcap_{n \in \mathbb{N}} \bigcup_{j \geq n} A_{j}^{\alpha} \\
\Rightarrow & \mathbb{P}\left((\exists \alpha>1) \lim \inf n^{\alpha} U_{n} \in \mathbb{R}\right)=0 .
\end{aligned}
$$

ii. We will use Borel-Cantelli 2) (Skript Lemma 3.1 p. 36). Define $A_{n}=\left\{U_{n} \leq n^{-1}\right\}$, it's clear that $\left(A_{n}\right)_{n \in \mathbb{N}}$ are independent. We have $\mathbb{P}\left(A_{n}\right)=\frac{1}{n}$, then $\sum_{n \in \mathbb{N}} \mathbb{P}\left(A_{n}\right)=$ ∞. By Borel-Cantelli

$$
\mathbb{P}\left(\bigcup_{n \in \mathbb{N}} \bigcap_{k \geq n} A_{k}\right)=1>0
$$

Additionally, if $\omega \in \bigcup_{n \in \mathbb{N}} \bigcap_{k \geq n} A_{k}$, for all $n \in \mathbb{N}$ there exists $k_{n}(\omega)>n$ so that $k_{n}(\omega) U_{k_{n}(\omega)} \leq 1$. Thus, $0 \leq \lim \inf n U_{n} \leq 1$. To conclude:

$$
\begin{aligned}
& \bigcup_{\substack{\alpha>1 \\
\alpha \in \mathbb{Q}}} n \in \mathbb{N} j \geq n \\
& \Rightarrow A_{j}^{\alpha} \subseteq\left\{\liminf n U_{n} \in \mathbb{R}\right\} \\
&\left(\liminf n U_{n} \in \mathbb{R}\right)=1>0
\end{aligned}
$$

Q3. Strong law of large number for variable with 4th moment. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Take $\left(X_{n}\right)_{n \in \mathbb{N}}$ a series of independent identically distributed random variables. Suppose that $\mathbb{E}\left(X_{1}\right)=0$ and $\mathbb{E}\left(X_{1}^{4}\right)<\infty$, and define $S_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
(a) Prove that $\mathbb{E}\left(S_{n}^{4}\right)=\frac{1}{n^{3}} \mathbb{E}\left(X_{1}^{4}\right)+\frac{6(n-1)}{n^{3}} \mathbb{E}\left(X_{1}^{2}\right)^{2}$. Why $\mathbb{E}\left(X_{1}^{2}\right)<\infty$?.
(b) Show that

$$
\mathbb{P}\left(\left|S_{n}\right|>a\right) \leq \frac{6}{a^{4}} \frac{1}{n^{2}} \mathbb{E}\left(X^{4}\right)
$$

(c) Using Borel-Cantelli show that $\mathbb{P}\left(\lim S_{n}=0\right)=1$.
(d) Now if the hypothesis $\mathbb{E}\left(X_{1}\right)=0$ is changed. Prove that $\lim S_{n}=\mathbb{E}\left(X_{1}\right)$.

Solution

(a) We have that

$$
\mathbb{E}\left(S_{n}^{4}\right)=\frac{1}{n^{4}} \sum_{i, j, k, l=1}^{n} \mathbb{E}\left(X_{i} X_{j} X_{k} X_{l}\right)
$$

note that if $i \notin\{j, k, l\}$

$$
\mathbb{E}\left(X_{i} X_{j} X_{k} X_{l}\right)=\mathbb{E}\left(X_{i}\right) \mathbb{E}\left(X_{j} X_{k} X_{l}\right)=0
$$

Thus,

$$
\begin{aligned}
\mathbb{E}\left(X_{i} X_{j} X_{k} X_{l}\right) & =\frac{1}{n^{4}} \sum_{i, j, k, l=1}^{n} \mathbf{1}_{\{i=j=k=l\}} \mathbb{E}\left(X_{1}^{4}\right)+\frac{1}{n^{4}} \sum_{i, j, k, l=1}^{n}\left(\mathbf{1}_{\{i=j \neq k=l\}}+\mathbf{1}_{\{i=k \neq j=l\}}+\mathbf{1}_{\{i=l \neq k=j\}}\right) \mathbb{E}(X \\
& =\frac{1}{n^{3}} \mathbb{E}\left(X_{1}^{4}\right)+\frac{6(n-1)}{n^{3}} \mathbb{E}\left(X_{1}^{2}\right)^{2} .
\end{aligned}
$$

We have by Hölder inequality that

$$
\mathbb{E}\left(X_{1}^{2}\right)=\mathbb{E}\left(X_{1}^{2} * 1\right) \leq \sqrt{\mathbb{E}\left(X_{1}^{4}\right)} \sqrt{\mathbb{E}\left(1^{2}\right)}<\infty
$$

(b) We will use the Markov inequality, i.e.,

$$
\begin{aligned}
\mathbb{P}\left(\left|S_{n}\right|>a\right) & =\mathbb{P}\left(\frac{\left(S_{n}\right)^{4}}{a^{4}}>1\right) \\
& =\mathbb{E}\left[\mathbf{1}_{\left\{\frac{\left(S_{n}\right)^{4}}{a^{4}} \geq 1\right\}}\right] \\
& \leq \mathbb{E}\left[\frac{\left(S_{n}\right)^{4}}{a^{4}} \mathbf{1}_{\left\{\frac{\left(S_{n}\right)^{4}}{a^{4}} \geq 1\right\}}\right] \\
& \leq \mathbb{E}\left[\frac{\left(S_{n}\right)^{4}}{a^{4}}\right] \\
& =\frac{1}{a^{4}}\left(\frac{1}{n^{3}} \mathbb{E}\left(X^{4}\right)+\frac{6(n-1)}{n^{3}} \mathbb{E}\left(X_{1}^{2}\right)^{2}\right) \\
& \leq \frac{6}{a^{4}} \frac{1}{n^{2}} \mathbb{E}\left[X_{1}^{4}\right],
\end{aligned}
$$

where in the last inequality we have used that $\mathbb{E}\left[X_{1}^{2}\right]^{2} \leq \mathbb{E}\left[X_{1}^{4}\right]$.
(c) Take $A_{n}^{m}=\left\{\omega:\left|S_{n}(\omega)\right|>\frac{1}{m}\right\}$. We have that

$$
\sum_{n \in \mathbb{N}} \mathbb{P}\left(A_{n}^{m}\right) \leq \sum_{n \in \mathbb{N}} 6 m^{4} \frac{1}{n^{2}} \mathbb{E}\left(X^{4}\right)<\infty
$$

By Borel-Cantelli $\mathbb{P}\left(\bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_{k}\right)=0$, so

$$
\begin{aligned}
& \mathbb{P}\left(\bigcup_{m \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_{k}\right)=0 \\
& \mathbb{P}\left(\bigcap_{m \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} \bigcap_{k \geq n} A_{k}^{c}\right)=1
\end{aligned}
$$

If $\omega \in \bigcap_{m \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} \bigcap_{n \geq k} A_{k}^{c}$ then for all $m \in \mathbb{N}$ there exists $n(\omega)$ so that for all $k \geq n(\omega)$ $\left|S_{n}(\omega)\right|<\frac{1}{m}$. Thus, $\lim _{n \rightarrow \infty}\left|S_{n}(\omega)\right|=0$. This implies that

$$
\mathbb{P}\left(\lim S_{n}(\omega)=0\right)=1
$$

(d) Define $\tilde{X}_{n}=X_{n}-\mathbb{E}\left(X_{n}\right)$. We have that \tilde{X}_{n} satisfies all the hypothesis for (c), then

$$
\begin{aligned}
& \mathbb{P}\left(\lim \tilde{X}_{n}=0\right)=1 \\
\Rightarrow & \mathbb{P}\left(\lim _{n \rightarrow \infty} X_{n}=\mathbb{E}\left[X_{n}\right]\right)=1
\end{aligned}
$$

