

ETH

Serie 6

March 30th, 2015

Q1. MEMORYLESSNESS OF EXPONENTIAL RANDOM VARIABLE. We say that a random variable X has an exponential distribution of parameter λ ($\mathcal{E}(\lambda)$) if for all $t \geq 0$:

$$\mathbb{P}(X \ge t) = e^{-\lambda t}.$$

- (a) Find the density function (with respect to the Lebesgue Measure) of an exponential random variable . Calculate its mean and its variance.
- (b) Show that if $X_1 \sim \mathcal{E}(\lambda_1)$, $X_2 \sim \mathcal{E}(\lambda_2)$ and $X_1 \perp X_2$, then $\min\{X_1, X_2\} \sim \mathcal{E}(\lambda_1 + \lambda_2)$.
- (c) Show that

$$\mathbb{P}\left(X \ge t + h \mid X \ge h\right) = \mathbb{P}(X \ge t).$$

This property is called memorylessness. We want to prove that the only random variable that has the memorylessness property is the exponential random variable. Suppose that $Y: \Omega \mapsto \mathbb{R}^+$ has the memorylessness property, i.e.,

$$\mathbb{P}\left(Y \ge t + h \mid Y \ge h\right) = \mathbb{P}(X \ge t).$$

- (d) Define $G(t) := \mathbb{P}(Y \ge t)$ and prove that G(t+h) = G(t)G(h).
- (e) Prove that for all $m, n \in \mathbb{N}$, $G\left(\frac{m}{n}\right) = G(1)^{\frac{m}{n}}$.
- (f) Using the monotone property of G prove that for all $t \ge 0$ $G(t) = G(1)^t$. Conclude that Y has an exponential distribution and make explicit the parameter.

Solution

(a) To find the density we just have to derive the CDF

$$F(t) := \mathbb{P}(X \le t) = 1 - \mathbb{P}(X \ge t) = 1 - e^{-\lambda t}.$$

Then its density is

$$f(t) := F'(t) = \lambda e^{-\lambda t}.$$

We can calculate its mean as

$$\mathbb{E}(X) = \int_0^\infty t\lambda e^{-\lambda t} dt$$
$$= -te^{-\lambda t} \mid_0^\infty + \int_0^\infty e^{-\lambda t} dt$$
$$= \frac{1}{\lambda}.$$

Then its second moment is

$$\mathbb{E}(X^2) = \int_0^\infty \lambda t^2 e^{-\lambda t} dt$$
$$= -t^2 e^{-\lambda t} \mid_0^\infty + 2 \int_0^\infty t e^{-\lambda t} dt$$
$$= \frac{2}{\lambda^2}.$$

In conclusion

$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \frac{1}{\lambda^2}.$$

(b) We just have to compute

$$\mathbb{P}\left(\min\{X_1, X_2\} > t\right) = \mathbb{P}(X_1 > t, X_2 > t)$$
$$= \mathbb{P}(X_1 > t)\mathbb{P}(X_2 > t)$$
$$= e^{-\lambda_1 t} e^{-\lambda_2 t}$$
$$= e^{-(\lambda_1 + \lambda_2)t}.$$

This is the definition of $\min\{X_1, X_2\} \sim \mathcal{E}(\lambda_1 + \lambda_2).$

(c) We just have to compute

$$\mathbb{P}\left(Y \ge t + h \mid Y \ge h\right) = \frac{\mathbb{P}(Y \ge t + h)}{\mathbb{P}(Y \ge h)} = e^{\lambda t} = \mathbb{P}(Y \ge t).$$

(d) We have to compute

$$G(t+h) = \mathbb{P}(Y \ge t+h)$$

= $\frac{\mathbb{P}(Y \ge t+h)}{\mathbb{P}(Y \ge h)} \mathbb{P}(Y \ge h)$
= $\mathbb{P}(Y \ge t+h \mid Y \ge h) \mathbb{P}(Y \ge h)$
= $G(t)G(h)$.

(e) First we will prove by induction that for all $n \in \mathbb{N}$ and $(a_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ we have that $G(\sum_{i=1}^n a_i) = \prod_{i=1}^n G(a_i)$. It's clear when n = 1, then assuming it's true for n

$$G\left(\sum_{i=1}^{n+1} a_i\right) = G(a_{n+1})G\left(\sum_{i=1}^n a_n\right) = \prod_{i=1}^{n+1} G(a_i).$$

Take $m, n \in \mathbb{N}$, we have that

$$\begin{split} G(1)^m &= G\left(\sum_{i=1}^m 1\right) = G\left(\sum_{i=1}^n \frac{m}{n}\right) = G\left(\frac{m}{n}\right)^n \\ \Rightarrow G(1)^{\frac{m}{n}} &= G\left(\frac{m}{n}\right) \end{split}$$

(f) Finally, take $t \in \mathbb{R}^+$ and $(t_n)_{n \in \mathbb{N}}$, $(s_n)_{n \in \mathbb{N}} \subseteq \mathbb{Q}$ so that $t_n \nearrow t$ and $s_n \searrow t$. Then thanks to the monotonicity of G(t)

$$G(t_n) \le G(t) \le G(s_n)$$

$$\Rightarrow G(1)^{t_n} \le G(t) \le G(1)^{s_n}$$

$$\Rightarrow G(t) = G(1)^t.$$

Finally we have that $\mathbb{P}(Y \ge t) = G(1)^t = e^{-\ln\left(\frac{1}{G(1)}\right)t}$, then $Y \sim \mathcal{E}\left(\ln\left(\frac{1}{G(1)}\right)\right)$.

Q2. BOREL CANTELLI

- (a) Construct a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and a series of measurable sets $(A_n)_{n \in \mathbb{N}}$ with $\sum_{n \in \mathbb{N}} \mathbb{P}(A_n) = \infty$ and $\mathbb{P}\left(\bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} A_k\right) = 0.$
- (b) Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Take $(U_n)_{n \in \mathbb{N}}$ a series of uniform independent random variables on (0, 1), i.e., for $0 \le x \le 1$, $\mathbb{P}(U_n \in [0, x]) = x$.
 - i. Show that:

$$\mathbb{P}\left((\exists \alpha > 1) \liminf n^{\alpha} U_n \in \mathbb{R}\right) = 0.$$

Hint: It may be useful to define, for $\alpha > 1$ $A_n^{\alpha} := \{U_n < n^{-\alpha}\}$. Do not forget that the countable union of sets of probability 0 has probability 0.

ii. Prove that:

$$\mathbb{P}\left(\liminf nU_n \in \mathbb{R}\right) > 0.$$

Solution

- (a) Take $([0,1], \mathcal{B}(0,1), \lambda)$ as a probability space and U the identity function. U is distributed as an uniform random variable on (0,1). Define $A_n := \{x \in (0,1) : U(x) \in [0,\frac{1}{n}]\}$. Then we have that $\mathbb{P}(A_n) = \frac{1}{n}$, so $\sum_{n \in \mathbb{N}} \mathbb{P}(A_n) = \infty$. Additionally $x \in \bigcap_{n \in \mathbb{N}} \bigcup_{k \ge 0} A_k$ iff x = 0, so $\mathbb{P}\left(\bigcap_{n \in \mathbb{N}} \bigcup_{k \ge 0} A_k\right) = 0$.
- (b) i. We will use Borel-Cantelli 1) (Skript Lemma 3.1 p. 36). Define $A_n^{\alpha} := \{U_n < n^{-\alpha}\},$ then:

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n^{\alpha}) = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} < \infty,$$

so
$$\mathbb{P}(\bigcap_{n\in\mathbb{N}}\bigcup_{j\geq n}A_j^{\alpha})=0$$
. Thus

$$\mathbb{P}\left(\bigcup_{\substack{\alpha>1\\\alpha\in\mathbb{Q}}}\bigcap_{n\in\mathbb{N}}\bigcup_{j\geq n}A_j^\alpha\right)=0.$$

Let $\omega \in \Omega$ so that there exists $\alpha(\omega)$ for which $\liminf n^{\alpha(\omega)}U_n(\omega) < \infty$. Then take $1 < \tilde{\alpha}(\omega) < \alpha(\omega)$ with $\tilde{\alpha}(\omega) \in \mathbb{Q}$. We have that $\liminf n^{\tilde{\alpha}(\omega)}U_n(\omega) = 0$. Then for all

 $n \in \mathbb{N}$ there exists $m(\omega) > n$ so that $m^{\tilde{\alpha}}U_m(\omega) < 1$. Thus, $\omega \in \bigcup_{\alpha \in \mathbb{Q}} \bigcap_{n \in \mathbb{N}} \bigcup_{j \ge n} A_j^{\alpha}$. Finally we have that

$$\{(\exists \alpha > 1) \liminf n^{\alpha} U_n \in \mathbb{R}\} \subseteq \bigcup_{\substack{\alpha > 1 \\ \alpha \in \mathbb{Q}}} \bigcap_{n \in \mathbb{N}} \bigcup_{j \ge n} A_j^{\alpha}$$
$$\Rightarrow \mathbb{P}\left((\exists \alpha > 1) \liminf n^{\alpha} U_n \in \mathbb{R}\right) = 0.$$

ii. We will use Borel-Cantelli 2) (Skript Lemma 3.1 p. 36). Define $A_n = \{U_n \leq n^{-1}\}$, it's clear that $(A_n)_{n \in \mathbb{N}}$ are independent. We have $\mathbb{P}(A_n) = \frac{1}{n}$, then $\sum_{n \in \mathbb{N}} \mathbb{P}(A_n) = \infty$. By Borel-Cantelli

$$\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}\bigcap_{k\geq n}A_k\right)=1>0.$$

Additionally, if $\omega \in \bigcup_{n \in \mathbb{N}} \bigcap_{k \ge n} A_k$, for all $n \in \mathbb{N}$ there exists $k_n(\omega) > n$ so that $k_n(\omega)U_{k_n(\omega)} \le 1$. Thus, $0 \le \liminf nU_n \le 1$. To conclude:

$$\bigcup_{\substack{\alpha>1\\\alpha\in\mathbb{Q}}}\bigcap_{n\in\mathbb{N}}\bigcup_{j\geq n}A_{j}^{\alpha}\subseteq\{\liminf nU_{n}\in\mathbb{R}\}\$$
$$\Rightarrow\mathbb{P}(\liminf nU_{n}\in\mathbb{R})=1>0.$$

- **Q3.** STRONG LAW OF LARGE NUMBER FOR VARIABLE WITH 4TH MOMENT. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Take $(X_n)_{n \in \mathbb{N}}$ a series of independent identically distributed random variables. Suppose that $\mathbb{E}(X_1) = 0$ and $\mathbb{E}(X_1^4) < \infty$, and define $S_n = \frac{1}{n} \sum_{i=1}^n X_i$.
 - (a) Prove that $\mathbb{E}(S_n^4) = \frac{1}{n^3} \mathbb{E}(X_1^4) + \frac{6(n-1)}{n^3} \mathbb{E}(X_1^2)^2$. Why $\mathbb{E}(X_1^2) < \infty$?.
 - (b) Show that

$$\mathbb{P}\left(|S_n| > a\right) \le \frac{6}{a^4} \frac{1}{n^2} \mathbb{E}\left(X^4\right).$$

- (c) Using Borel-Cantelli show that $\mathbb{P}(\lim S_n = 0) = 1$.
- (d) Now if the hypothesis $\mathbb{E}(X_1) = 0$ is changed. Prove that $\lim S_n = \mathbb{E}(X_1)$.

Solution

(a) We have that

$$\mathbb{E}\left(S_{n}^{4}\right) = \frac{1}{n^{4}} \sum_{i,j,k,l=1}^{n} \mathbb{E}\left(X_{i} X_{j} X_{k} X_{l}\right),$$

note that if $i \notin \{j, k, l\}$

$$\mathbb{E}(X_i X_j X_k X_l) = \mathbb{E}(X_i) \mathbb{E}(X_j X_k X_l) = 0.$$

Thus,

$$\mathbb{E}\left(X_{i}X_{j}X_{k}X_{l}\right) = \frac{1}{n^{4}}\sum_{i,j,k,l=1}^{n} \mathbf{1}_{\{i=j=k=l\}}\mathbb{E}\left(X_{1}^{4}\right) + \frac{1}{n^{4}}\sum_{i,j,k,l=1}^{n} (\mathbf{1}_{\{i=j\neq k=l\}} + \mathbf{1}_{\{i=k\neq j=l\}} + \mathbf{1}_{\{i=l\neq k=j\}})\mathbb{E}\left(X_{1}^{4}\right) \\ = \frac{1}{n^{3}}\mathbb{E}\left(X_{1}^{4}\right) + \frac{6(n-1)}{n^{3}}\mathbb{E}\left(X_{1}^{2}\right)^{2}.$$

We have by Hölder inequality that

$$\mathbb{E}\left(X_{1}^{2}\right) = \mathbb{E}\left(X_{1}^{2} * 1\right) \leq \sqrt{\mathbb{E}\left(X_{1}^{4}\right)\sqrt{\mathbb{E}\left(1^{2}\right)}} < \infty$$

(b) We will use the Markov inequality, i.e.,

$$\mathbb{P}\left(|S_n| > a\right) = \mathbb{P}\left(\frac{(S_n)^4}{a^4} > 1\right)$$
$$= \mathbb{E}\left[\mathbf{1}_{\left\{\frac{(S_n)^4}{a^4} \ge 1\right\}}\right]$$
$$\leq \mathbb{E}\left[\frac{(S_n)^4}{a^4}\mathbf{1}_{\left\{\frac{(S_n)^4}{a^4} \ge 1\right\}}\right]$$
$$\leq \mathbb{E}\left[\frac{(S_n)^4}{a^4}\right]$$
$$= \frac{1}{a^4}\left(\frac{1}{n^3}\mathbb{E}\left(X^4\right) + \frac{6(n-1)}{n^3}\mathbb{E}\left(X_1^2\right)^2\right)$$
$$\leq \frac{6}{a^4}\frac{1}{n^2}\mathbb{E}\left[X_1^4\right],$$

where in the last inequality we have used that $\mathbb{E}[X_1^2]^2 \leq \mathbb{E}[X_1^4]$. (c) Take $A_n^m = \{\omega : |S_n(\omega)| > \frac{1}{m}\}$. We have that

$$\sum_{n \in \mathbb{N}} \mathbb{P}(A_n^m) \le \sum_{n \in \mathbb{N}} 6m^4 \frac{1}{n^2} \mathbb{E}\left(X^4\right) < \infty.$$

By Borel-Cantelli $\mathbb{P}(\bigcap_{n\in\mathbb{N}}\bigcup_{k\geq n}A_k)=0,$ so

$$\mathbb{P}\left(\bigcup_{m\in\mathbb{N}}\bigcap_{n\in\mathbb{N}}\bigcup_{k\geq n}A_k\right) = 0$$
$$\mathbb{P}\left(\bigcap_{m\in\mathbb{N}}\bigcup_{n\in\mathbb{N}}\bigcap_{k\geq n}A_k^c\right) = 1.$$

If $\omega \in \bigcap_{m \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} \bigcap_{n \geq k} A_k^c$ then for all $m \in \mathbb{N}$ there exists $n(\omega)$ so that for all $k \geq n(\omega)$ $|S_n(\omega)| < \frac{1}{m}$. Thus, $\lim_{n \to \infty} |S_n(\omega)| = 0$. This implies that

$$\mathbb{P}\left(\lim S_n(\omega)=0\right)=1.$$

(d) Define $\tilde{X}_n = X_n - \mathbb{E}(X_n)$. We have that \tilde{X}_n satisfies all the hypothesis for (c), then

$$\mathbb{P}\left(\lim \tilde{X}_n = 0\right) = 1$$
$$\Rightarrow \mathbb{P}\left(\lim_{n \to \infty} X_n = \mathbb{E}\left[X_n\right]\right) = 1$$