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Q1. MEMORYLESSNESS OF EXPONENTIAL RANDOM VARIABLE. We say that a random variable
X has an exponential distribution of parameter A (E(\)) if for all ¢ > 0:

P(X >t)=e .

(a) Find the density function (with respect to the Lebesgue Measure) of an exponential
random variable . Calculate its mean and its variance.

(b) Show that if X7 ~ E(A1), Xo ~ E(A2) and X; L X5, then min{ Xy, Xo} ~ E(A1 + A2).
(c) Show that

P(X>t+h|X>h)=PX >1).

This property is called memorylessness. We want to prove that the only random variable
that has the memorylessness property is the exponential random variable. Suppose that
Y : Q+— RT has the memorylessness property, i.e.,

P(Y>t+h|Y >h)=P(X >t).

(d) Define G(t) :=P(Y > t) and prove that G(t + h) = G(t)G(h).

(e) Prove that for all m,n € N, G (2) = G(1)".

(f) Using the monotone property of G prove that for all ¢ > 0 G(t) = G(1)". Conclude that
Y has an exponential distribution and make explicit the parameter.

Solution

(a) To find the density we just have to derive the CDF
Fit) =P(X<t)=1-PX>t)=1—e"
Then its density is
ft):=F'(t) = de™.
We can calculate its mean as

E(X) = / the Mdt
0

= —te M| + / e Mdt
0

1
Y
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Then its second moment is
E(X?) = / AtPe Mdt
0

oo
= 2 M| +2/ te Mdt
0
In conclusion

(b) We just have to compute

P(min{Xl,Xg} > t) = ]P(Xl > 1, Xo > t)

— e*)qtef/\gt

— 67(}\1+)\2)t.

This is the definition of min{ Xy, Xo} ~ (A1 + A2).
(c) We just have to compute

P(Y >t + h)

P(Y2t+h|Y2h)=—prsp

=M =P(Y >1t).

(d) We have to compute

(e) First we will prove by induction that for all n € N and (a,)neny € R we have that
GO a;) =11, G(a;). It’s clear when n = 1, then assuming it’s true for n

G <Z ai) = G(ap1)G (Z an> = HG(ai).

Take m,n € N, we have that
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(f) Finally, take ¢t € R™ and (¢,,)nen, (Sn)neny € Q so that ¢, ~t and s, \,¢. Then thanks
to the monotonicity of G(t)

G(t,) < G(t) < G(sy)
=G(1)" < G(t) < G(1)™
=G(t) = G(1)".

Finally we have that P(Y >¢) = G(1)! = e_ln(ﬁ>t, then Y ~ & <1n (ﬁ))

Q2. BOREL CANTELLI

(a) Construct a probability space (2, A,P) and a series of measurable sets (A, )n,en with
> nen P(A,) = 00 and P (N),cn Uisn Ap) =0.

(b) Let (2, A,P) be a probability space. Take (U,)nen a series of uniform independent
random variables on (0,1), i.e., for 0 <z <1, P(U, € [0,z]) = .

i. Show that:
P((Ja > 1) liminf n*U,, € R) = 0.

Hint: It may be useful to define, for & > 1 A% := {U,, < n~*}. Do not forget that
the countable union of sets of probability 0 has probability 0.

ii. Prove that:
P (lim inf nU,, € R) > 0.
Solution

(a) Take (]0,1],B(0,1),\) as a probability space and U the identity function. U is dis-
tributed as an uniform random variable on (0,1). Define A, := {z € (0,1) : U(z) €
[0,1]}. Then we have that P(4,) = L, so Y, yP(A,) = co. Additionally z €

Mpen Upso Ak iff 2 =0, so P (Nhen U0 Ap) =0.
(b) i. We will use Borel-Cantelli 1) (Skript Lemma 3.1 p. 36). Define A% := {U,, < n™“},

then:
iIP’(Az) = in—la < 00,
n=1 n=1

50 P(M,en Ujsn A5) = 0. Thus

PlUNUAr] =0

a>1neNj>n
acQ

Let w € Q so that there exists a(w) for which liminf n®“ U, (w) < oo.Then take
1 < a(w) < a(w) with &(w) € Q. We have that lim inf n®“) U, (w) = 0. Then for all
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n € N there exists m(w) > n so that m®U,,(w) < 1. Thus, w € Uwé MNnen Ujsn 45
ac -
Finally we have that

{Ga > DliminfreU, eRY C | () 47

a>1neNj>n
acQ

=P ((3a > 1) liminf n*U, € R) = 0.

ii. We will use Borel-Cantelli 2) (Skript Lemma 3.1 p. 36). Define A, = {U, <n~ '},
it’s clear that (A,)nen are independent. We have P(A,) = 1, then > (P(A,) =
oo. By Borel-Cantelli

]P’(U ﬂAk>:1>0.

neN k>n

Additionally, if w € U,y Nizp Ak, for all n € N there exists k,(w) > n so that
kn(w)Uy, (w) < 1. Thus, 0 < liminf nU, < 1. To conclude:

U N U 45 € {liminfnU, € R}

a>1neN j>n
aceQ

=P (liminfnlU, € R) =1 > 0.

Q3. STRONG LAW OF LARGE NUMBER FOR VARIABLE WITH 4TH MOMENT. Let (Q,A,P) be
a probability space . Take (X, ),en a series of independent identically distributed random
variables. Suppose that E (X;) = 0 and E (X}) < oo, and define S, = 23" | X;.

(a) Prove that E(S!) = LE(X}) + ““7UE (X2)%. Why E(X7) < oo?.
(b) Show that

P(1S, > a) < S LE (XY

a*n?
(c) Using Borel-Cantelli show that P (lim .S, = 0) = 1.
(d) Now if the hypothesis E (X;) = 0 is changed. Prove that lim S,, = E (X;).

Solution

(a) We have that

note that if ¢ ¢ {j, k,(}

E (X;X;Xp X)) = E (X3) E (X;X,.X;) = 0.
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Thus,
- |
E (X, X; X Xp) = Z Liimjmr=iE (X7) +o3 T Y (Limjhmty + Limkrjmty + Liiminmi) ) E (X
i,5,k,0=1 ,5,k,l=1
1 4 6(n/——1) 2\ 2
ZEE(XI)JF—M E (X7)".

(b)

(c)

We have by Hoélder inequality that

E(X?) =F (X?#1) < /E(XHVE (12) < 00

We will use the Markov inequality, i.e.,
P(|Sy| >a)=P ((iLf > 1)
—F {“”>4>1}]
<E <S ) {(sn> >1}1
<E :<i§)4}
- & (Eeey + s ()
< B

where in the last inequality we have used that E [X2]* < E[X3].
Take A7 = {w : [S,(w)| > L}. We have that

ZIP’Am<ZGm— <oo

neN neN

By Borel-Cantelli P((), ey Ujs, Ax) = 0, s0

P(U ﬂUAk>:O

meNneN k>n

P(ﬂ UQA;>:1.

meNneN k>n

If w € Men Unen Nnsk Ak then for all m € N there exists n(w) so that for all £ > n(w)

|Sn(w)] < E. Thus, limy,_e [ Sy (w)| = 0. This implies that
P (lim S, (w) =0) = 1.

(d) Define X,, = X,, — E(X,,). We have that X,, satisfies all the hypothesis for (c), then

iy (hmf(n - 0) —1

=P ( lim X, = E [Xn]> ~ 1.

n—o0



