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Q1. Memorylessness of exponential random variable. We say that a random variable
X has an exponential distribution of parameter λ (E(λ)) if for all t ≥ 0:

P(X ≥ t) = e−λt.

(a) Find the density function (with respect to the Lebesgue Measure) of an exponential
random variable . Calculate its mean and its variance.

(b) Show that if X1 ∼ E(λ1), X2 ∼ E(λ2) and X1 ⊥ X2, then min{X1, X2} ∼ E(λ1 + λ2).

(c) Show that

P (X ≥ t+ h | X ≥ h) = P(X ≥ t).

This property is called memorylessness. We want to prove that the only random variable
that has the memorylessness property is the exponential random variable. Suppose that
Y : Ω 7→ R+ has the memorylessness property, i.e.,

P (Y ≥ t+ h | Y ≥ h) = P(X ≥ t).

(d) De�ne G(t) := P(Y ≥ t) and prove that G(t+ h) = G(t)G(h).

(e) Prove that for all m,n ∈ N, G
(
m
n

)
= G(1)

m
n .

(f) Using the monotone property of G prove that for all t ≥ 0 G(t) = G(1)t. Conclude that
Y has an exponential distribution and make explicit the parameter.

Solution

(a) To �nd the density we just have to derive the CDF

F (t) := P(X ≤ t) = 1− P(X ≥ t) = 1− e−λt.

Then its density is

f(t) := F ′(t) = λe−λt.

We can calculate its mean as

E (X) =

∫ ∞
0

tλe−λtdt

= −te−λt |∞0 +

∫ ∞
0

e−λtdt

=
1

λ
.
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Then its second moment is

E
(
X2
)

=

∫ ∞
0

λt2e−λtdt

= −t2e−λt |∞0 +2

∫ ∞
0

te−λtdt

=
2

λ2
.

In conclusion

V ar(X) = E
(
X2
)
− E (X)2 =

1

λ2
.

(b) We just have to compute

P (min{X1, X2} > t) = P(X1 > t,X2 > t)

= P(X1 > t)P(X2 > t)

= e−λ1te−λ2t

= e−(λ1+λ2)t.

This is the de�nition of min{X1, X2} ∼ E(λ1 + λ2).

(c) We just have to compute

P (Y ≥ t+ h | Y ≥ h) =
P(Y ≥ t+ h)

P(Y ≥ h)
= eλt = P(Y ≥ t).

(d) We have to compute

G(t+ h) = P(Y ≥ t+ h)

=
P(Y ≥ t+ h)

P(Y ≥ h)
P(Y ≥ h)

= P(Y ≥ t+ h | Y ≥ h)P(Y ≥ h)

= G(t)G(h).

(e) First we will prove by induction that for all n ∈ N and (an)n∈N ⊆ R we have that
G(
∑n

i=1 ai) =
∏n

i=1G(ai). It's clear when n = 1, then assuming it's true for n

G

(
n+1∑
i=1

ai

)
= G(an+1)G

(
n∑
i=1

an

)
=

n+1∏
i=1

G(ai).

Take m,n ∈ N, we have that

G(1)m = G

(
m∑
i=1

1

)
= G

(
n∑
i=1

m

n

)
= G

(m
n

)n
⇒G(1)

m
n = G

(m
n

)
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(f) Finally, take t ∈ R+ and (tn)n∈N, (sn)n∈N ⊆ Q so that tn ↗ t and sn ↘ t. Then thanks
to the monotonicity of G(t)

G(tn) ≤ G(t) ≤ G(sn)

⇒G(1)tn ≤ G(t) ≤ G(1)sn

⇒G(t) = G(1)t.

Finally we have that P(Y ≥ t) = G(1)t = e− ln( 1
G(1))t, then Y ∼ E

(
ln
(

1
G(1)

))
.

Q2. Borel Cantelli

(a) Construct a probability space (Ω,A,P) and a series of measurable sets (An)n∈N with∑
n∈N P(An) =∞ and P

(⋂
n∈N

⋃
k≥nAk

)
= 0.

(b) Let (Ω,A,P) be a probability space. Take (Un)n∈N a series of uniform independent
random variables on (0, 1), i.e., for 0 ≤ x ≤ 1, P(Un ∈ [0, x]) = x.

i. Show that:

P ((∃α > 1) lim inf nαUn ∈ R) = 0.

Hint: It may be useful to de�ne, for α > 1 Aαn := {Un < n−α}. Do not forget that
the countable union of sets of probability 0 has probability 0.

ii. Prove that:

P (lim inf nUn ∈ R) > 0.

Solution

(a) Take ([0, 1],B(0, 1), λ) as a probability space and U the identity function. U is dis-
tributed as an uniform random variable on (0, 1). De�ne An := {x ∈ (0, 1) : U(x) ∈
[0, 1

n
]}. Then we have that P(An) = 1

n
, so

∑
n∈N P(An) = ∞. Additionally x ∈⋂

n∈N
⋃
k≥0Ak i� x = 0, so P

(⋂
n∈N

⋃
k≥0Ak

)
= 0.

(b) i. We will use Borel-Cantelli 1) (Skript Lemma 3.1 p. 36). De�ne Aαn := {Un < n−α},
then:

∞∑
n=1

P(Aαn) =
∞∑
n=1

1

nα
<∞,

so P(
⋂
n∈N

⋃
j≥nA

α
j ) = 0. Thus

P

⋃
α>1
α∈Q

⋂
n∈N

⋃
j≥n

Aαj

 = 0.

Let ω ∈ Ω so that there exists α(ω) for which lim inf nα(ω)Un(ω) < ∞.Then take
1 < α̃(ω) < α(ω) with α̃(ω) ∈ Q. We have that lim inf nα̃(ω)Un(ω) = 0 . Then for all
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n ∈ N there existsm(ω) > n so thatmα̃Um(ω) < 1. Thus, ω ∈
⋃
α>1
α∈Q

⋂
n∈N

⋃
j≥nA

α
j .

Finally we have that

{(∃α > 1) lim inf nαUn ∈ R} ⊆
⋃
α>1
α∈Q

⋂
n∈N

⋃
j≥n

Aαj

⇒P ((∃α > 1) lim inf nαUn ∈ R) = 0.

ii. We will use Borel-Cantelli 2) (Skript Lemma 3.1 p. 36). De�ne An = {Un ≤ n−1},
it's clear that (An)n∈N are independent. We have P(An) = 1

n
, then

∑
n∈N P(An) =

∞. By Borel-Cantelli

P

(⋃
n∈N

⋂
k≥n

Ak

)
= 1 > 0.

Additionally, if ω ∈
⋃
n∈N

⋂
k≥nAk, for all n ∈ N there exists kn(ω) > n so that

kn(ω)Ukn(ω) ≤ 1. Thus, 0 ≤ lim inf nUn ≤ 1. To conclude:⋃
α>1
α∈Q

⋂
n∈N

⋃
j≥n

Aαj ⊆ {lim inf nUn ∈ R}

⇒P (lim inf nUn ∈ R) = 1 > 0.

Q3. Strong law of large number for variable with 4th moment. Let (Ω,A,P) be
a probability space . Take (Xn)n∈N a series of independent identically distributed random
variables. Suppose that E (X1) = 0 and E (X4

1 ) <∞, and de�ne Sn = 1
n

∑n
i=1Xi.

(a) Prove that E(S4
n) = 1

n3E (X4
1 ) + 6(n−1)

n3 E (X2
1 )

2
. Why E (X2

1 ) <∞?.

(b) Show that

P (|Sn| > a) ≤ 6

a4
1

n2
E
(
X4
)
.

(c) Using Borel-Cantelli show that P (limSn = 0) = 1.

(d) Now if the hypothesis E (X1) = 0 is changed. Prove that limSn = E (X1).

Solution

(a) We have that

E
(
S4
n

)
=

1

n4

n∑
i,j,k,l=1

E (XiXjXkXl) ,

note that if i /∈ {j, k, l}

E (XiXjXkXl) = E (Xi)E (XjXkXl) = 0.
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Thus,

E (XiXjXkXl) =
1

n4

n∑
i,j,k,l=1

1{i=j=k=l}E
(
X4

1

)
+

1

n4

n∑
i,j,k,l=1

(1{i=j 6=k=l} + 1{i=k 6=j=l} + 1{i=l 6=k=j})E
(
X2

1

)2
=

1

n3
E
(
X4

1

)
+

6(n− 1)

n3
E
(
X2

1

)2
.

We have by Hölder inequality that

E
(
X2

1

)
= E

(
X2

1 ∗ 1
)
≤
√
E (X4

1 )
√
E (12) <∞

(b) We will use the Markov inequality, i.e.,

P (|Sn| > a) = P
(

(Sn)4

a4
> 1

)
= E

[
1{

(Sn)4

a4
≥1

}]
≤ E

[
(Sn)4

a4
1{

(Sn)4

a4
≥1

}]
≤ E

[
(Sn)4

a4

]
=

1

a4

(
1

n3
E
(
X4
)

+
6(n− 1)

n3
E
(
X2

1

)2)
≤ 6

a4
1

n2
E
[
X4

1

]
,

where in the last inequality we have used that E [X2
1 ]

2 ≤ E [X4
1 ].

(c) Take Amn = {ω : |Sn(ω)| > 1
m
}. We have that∑

n∈N

P(Amn ) ≤
∑
n∈N

6m4 1

n2
E
(
X4
)
<∞.

By Borel-Cantelli P(
⋂
n∈N

⋃
k≥nAk) = 0, so

P

(⋃
m∈N

⋂
n∈N

⋃
k≥n

Ak

)
= 0

P

(⋂
m∈N

⋃
n∈N

⋂
k≥n

Ack

)
= 1.

If ω ∈
⋂
m∈N

⋃
n∈N

⋂
n≥k A

c
k then for all m ∈ N there exists n(ω) so that for all k ≥ n(ω)

|Sn(ω)| < 1
m
. Thus, limn→∞ |Sn(ω)| = 0. This implies that

P (limSn(ω) = 0) = 1.

(d) De�ne X̃n = Xn − E (Xn). We have that X̃n satis�es all the hypothesis for (c), then

P
(

lim X̃n = 0
)

= 1

⇒P
(

lim
n→∞

Xn = E [Xn]
)

= 1.
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