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Dictionary for Probability and Statistics, Chapter 1 & 2
English → German

betting strategy: Spielsystem

conditional probability: bedingte Wahrscheinlichkeit

event: Ereigniss

expectation IE: Erwartungswert IE

matching problem: Garderobenproblem

outcome ω: Ergebniss ω

partition of Ω: Zerlegung von Ω

power set: Potenzmenge

probability measure IP: Wahrscheinlichkeitsmass IP

probability of success: Erfolgswahrscheinlichkeit

probability space (Ω,A, IP): Wahrscheinlichkeitsraum (Ω,A, IP)

random variable X: Zufallsvariabele X

random walk: Irrfahrt

replacement: Zurücklegen

sample space Ω: Grundraum Ω

uniform distribution: Gleichverteilung
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1 Chapter 1: Introduction

The sample space is denoted by Ω and subsets A of Ω are called events. In
Chapter 2 we only consider countable Ω. In Chapter 3 we will introduce a
collection A of “measurable” subsets of Ω. When Ω is countable on can take A
as the collection of all subsets, the so-called power set of Ω. We need measure
theory to deal with uncountable Ω.

A probability measure IP is a mapping

IP : A → [0, 1]

which satisfies certain conditions: the axioms of Kolmogorov (see Chapter 3).
For A ∈ A we say that IP(A) is the probability of the event A.

There are several interpretations of probability. It can express one’s belief in a
certain event2. One can have a frequentist interpretation: the probability of an
event is the frequency of occurrences of this event if we repeat the experiment
infinitely often. One may want to define the probability of A as the number
of outcomes where A occurs divided by the total number of outcomes3 (this
corresponds to the uniform distribution on all possible outcomes). One may
also want to view probabilities (randomness) as complexity measures.

2For example: the probability that a nurse is a murderer is less that .00001 %.
3For example: the probability of life on a planet is equal to the number of planets with life

divided by the total number of planets.
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2 Chapter 2: Discrete probability space

2.1. Basics

Let Ω be countable and A be the power set of Ω.

Definition Consider a given mapping

p : Ω→ [0, 1]

with
∑

ω p(ω) = 1. We define

IP(A) :=
∑
ω∈A

p(ω), A ∈ A.

We call (Ω,A, IP) a discrete probability space.

Two important discrete distributions

Geometric distribution Ω := {1, 2, . . .}, p(ω) := (1− p)ω−1p with 0 < p < 1
a parameter.

Poisson distribution Ω = {0, 1, 2, . . .}, p(ω) := e−λλk/k! with λ > 0 a pa-
rameter. We call this the Poisson(λ)-distribution.

Random variables and expectation

Definition A random variable X is a mapping

X : Ω→ R.

We write
IP(X = x) := IP({ω : X(ω) = x}).

Definition The expectation of a random variable X is

IEX :=
∑
x

xIP(X = x).

Lemma Suppose X ∈ {0, 1, 2, . . .}. Then

IEX =

∞∑
k=0

IP(X > k).

Linearity of the expectation Let X and Y be random variables and a and
b be constants. Then

IE

(
aX + bY

)
= aIEX + bIEY.
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2.2. Urn models

Consider an urn with k white balls and N − k red balls. Define p := k/N . We
sample at random n balls from the urn.
1) Sampling with replacement gives a binomial distribution:

IP(x white balls) =

(
n

k

)
px(1− p)N−x, x ∈ {0, 1, . . . , n}.

2) Sampling without replacement gives a hypergeometric distribution:

IP(x white balls) =

(
K
x

)(
N−K
n−x

)(
N
n

) , x ∈ {0, 1, . . . , n} ∩ [n+K −N,K].

Special case of binomial distribution: p = 1/2, n := 2n:

IP(X = x) =

(
2n

x

)
2−2n, x ∈ {0, 1, . . . , 2n}.

So

IP(X = x) =

(
2n

n

)
2−2n ∼ 1√

nπ
,

where the last result follows from Stirling’s formula4 .

2.3 Random walk

2.3.1. Definition of the random walk

Let Ω := {ω = (x1, . . . , xN ) : xi ∈ {±1} ∀ i} and let IP be the uniform
distribution:

IP(A) :=
|A|
|Ω|

, A ∈ A.

Definition 2.1 Consider the random variables Xi(ω) := i-th component of
ω ∈ Ω, i = 1, . . . , N . Let S0 := 0 and for n = 1, . . . , N , Sn :=

∑n
i=1Xi. Then

{Sn}Nn=0 is called a random walk (starting at zero).

Theorem 2.1 We have

IP(Sn = 2k − n) =

(
n

k

)
2−n, k = 0, 1, . . . , n.

Corollary It holds that
IP(S2n = 0) =

(
2n
n

)
2−2n ∼ 1/

√
nπ,

IP(S2n−1 = 1) = IP(S2n = 0).

4The notation a ∼ b means a/b→ 1 (n→∞).
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2.3.2. First visit at level a 6= o and first return to zero

Let a ∈ Z and
Ta := min{n ≥ 1 : Sn = a}.

If no such n exists we define Ta :=∞.

Result
IP(Ta > n)→ 0 as N ≥ n→∞,
IETa →∞ as N ≥ n→∞

To prove this result we first prove
IP(Ta > n) = IP(Sn ∈ (−a, a]), a 6= 0,
IP(T0 > 2n) = IP(S2n = 0).

Here in turn, we apply the reflection principle.

2.3.3. The arcsin law for the last visit at zero

Let N := 2N and
L = max{0 ≤ n ≤ 2N : Sn = 0}.

Theorem 2.4 We have

IP(L = 2n) =

(
2n

n

)(
2(N − n)

N − n

)
2−2N , n = 0, 1, . . . , N

Approximation For N →∞ and n/N → x ∈ [0, 1]

IP(L = 2n) ∼ 1

N

1

π
√
x(1− x)

.

This is called the arcsin law because∫ x

0

1

π
√
u(1− u)

du = 2arcsin(
√
x), 0 < x ≤ 1.

2.3.4. The impossibility of a winning betting strategy

Definition 2.2 An event A ⊂ Ω is called observable at time n (0 ≤ n ≤ N) if
its indicator function lA can be written as

lA(ω) = φn(X1(ω), . . . , Xn(ω)), ∀ ω ∈ Ω,

where φn : {±1}n → {0, 1} is a given function. The collection An is defined as
all events A that are observable at time n.

Definition 2.3 The mapping

T : Ω→ {0, 1, . . . , N}
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is called a stopping time if {T = n} ∈ An, n ∈ {0, . . . , N}.

We now consider random variables {Vk}Nk=1.

Definition A random variable Vk is called observable at time k − 1 if

Vk(ω) = φk−1(X1(ω), . . . , Xk−1(ω)), ∀ ω ∈ Ω,

where φk−1 : {±1}k−1 → R is a given function5.

Definition A betting strategy is {(V · S)n :=
∑n

k=1 VkXk : 1 ≤ n ≤ N}.

Impossibility of a winning betting strategy: For any stopping time T

IE(V · S)T = 0.

This result can be proved by writing

Ṽk := l{T ≥ k} ∈ Ak−1

i.e. Ṽk it is observable at time k − 1 (k = 1, . . . , N).

2.4. Conditional probability

Definition Let IP(B) > 0. The conditional probability of A given B is defined
as

IP(A|B) :=
IP(A ∩B)

IP(B)
.

Definition A partition of Ω is a collection of mutually disjoint events {Bi}i∈I
such that ∪i∈IBi = Ω.

Theorem 2.7 (Law of total probability). Let {Bi}i∈I be a partition of Ω such
that IP(Bi) > 0 for all i. Then

IP(A) =
∑
i∈I

IP(A|Bi)IP(Bi).

Bayes’ rule: When both IP(A) > 0 and IP(B) > 0:

IP(B|A) = IP(A|B)
IP(B)

IP(A)
.

Corollary
IP(B|A)

IP(Bc|A)︸ ︷︷ ︸
posterior odds

=
IP(A|B)

IP(A|Bc)︸ ︷︷ ︸
likelihood ratio

× IP(B)

IP(Bc)︸ ︷︷ ︸
prior odds

.

5These are not the same functions as used in Definition 2.2.
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Theorem 2.9 Let {Bi}i∈I be a partition of Ω such that IP(Bi) > 0 for all i.
Then for IP(A) > 0

IP(Bi|A) =
IP(A|Bi)IP(Bi)∑
j∈I IP(A|Bj)IP(Bj)

.

2.5. Conditional expectation for discrete random variables

Let X and Y be two discrete random variables. We define the conditional
expectation of X given Y = y as6

IE(X|Y = y) :=
∑
x

xIP(X = x|Y = y).

Note that IE(X|Y = y) is a function of y. Let us write this as

IE(X|y) = h(y).

The conditional expectation of X given Y is

IE(X|Y ) := h(Y ).

Observe that IE(X|Y ) is a random variable (in this case a discrete one).

Theorem (Iterated expectations)

IE

(
IE(X|Y )

)
= IEX.

Let X be a random variable which we want to predict using the random variable
Y by some function of Y , say g(Y ). We then call IE(X − g(Y ))2 the (squared)
prediction error.

Theorem 2.10 The minimizer over all functions g : R → R of IE(X − g(Y ))2

is given by g(Y ) = IE(X|Y ).

2.6 Independence

Definition 2.6 The events A and B are called independent if

IP(A ∩B) = IP(A)IP(B).

The events {Aj}j∈J are called pairwise independent if

IP(Ai ∩Aj) = IP(Ai)IP(Aj) ∀ i 6= j.

6We consider only values of y with IP(Y = y) > 0.
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They are called independent if for all I ⊂ J

IP(∩i∈IAi) =
∏
i∈I

IP(Ai).

The random variables X1, . . . , Xn are called independent if

IP(X1 = x1, . . . , Xn = Xn) =
n∏
i=1

IP(Xi = xi) ∀ (x1, . . . , xn) ∈ Rn.

Note: the events {Ai} are independent iff their indicator functions {lAi} are
independent.

Lemma 2.4 Suppose X1, . . . , Xn are independent. Then

IE

( n∏
i=1

Xi

)
=

n∏
i=1

IEXi.

2.6.2. The binomial distribution

Let X1, . . . , Xn be independent with

IP(Xi = 1) = 1− IP(Xi = 0) = p, i = 1, . . . , n,

where 0 < p < 1 is a parameter. Define

Sn :=
n∑
i=1

Xi.

Then

IP(Sn = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

In other words, Sn has the binomial distribution with parameters n and p
(Bin(n, p)-distribution).

Approximation of the binomial distribution by the normal distribu-
tion

The standard normal distribution We call

φ(x) :=
1√
2π

exp

[
−x

2

2

]
, x ∈ R

the density of the standard normal distribution. We call

Φ(x) :=

∫ x

−∞
φ(u)du, u ∈ R
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the distribution function of the standard normal distribution.

Theorem 2.11 (de Moivre-Laplace). Let p be fixed and let A > 0 be a fixed
constant (i.e. both not depending on n). Suppose k grows with n and satisfies
|k − np| ≤ A

√
n. Then for n→∞

IP(Sn = k) ∼ 1

σ
φ

(
k − µ
σ

)
,

where µ := np and σ2 := np(1− p).

2.6.3. The Poisson distribution

Approximation of the binomial distribution by the Poisson distribu-
tion

Suppose X has the binomial distribution with parameters n and p where

p =
λ

n

for some λ > 0 not depending on n. Then for n→∞ and k fixed

IP(X = k) ∼ e−λ
λk

k!
.

In other words, X is then approximately Poisson distributed.

Some further properties of the Poisson distribution

Theorem 2.13 Let X1 and X2 be independent and suppose that for all k ∈
{0, . . . , n} and all n ∈ {0, 1, 2, . . .}

IP(X1 = k|X1 +X2 = n) =

(
n

k

)
2−n

(i.e., given the sum X1 + X2 = n, the random variable X1 has a bin(n, 12)-
distribution). Then there is a λ > 0 such that both X1 as well as X2 have a
Poisson distribution with parameter λ.

Theorem 2.14 Let X1 and X2 be independent, and suppose7

X1 ∼D Poisson(λ1), X2 ∼D Poisson(λ2).

Then
X1 +X2 ∼D Poisson(λ1 + λ2).

7The notation ∼D means “has distribution”
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