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Dictionary for Probability and Statistics, Chapter 1 & 2

English — German

betting strategy: Spielsystem

conditional probability: bedingte Wahrscheinlichkeit

event: Ereigniss

expectation E: Erwartungswert E

matching problem: Garderobenproblem

outcome w: Ergebniss w

partition of Q: Zerlegung von 2

power set: Potenzmenge

probability measure IP: Wahrscheinlichkeitsmass IP

probability of success: Erfolgswahrscheinlichkeit

probability space (€2, A, IP): Wahrscheinlichkeitsraum (9, A, P)

random variable X: Zufallsvariabele X

random walk: Irrfahrt

replacement: Zuricklegen

sample space Q: Grundraum ()

uniform distribution: Gleichverteilung



1 Chapter 1: Introduction

The sample space is denoted by € and subsets A of € are called events. In
Chapter 2 we only consider countable 2. In Chapter 3 we will introduce a
collection A of “measurable” subsets of 2. When 2 is countable on can take A
as the collection of all subsets, the so-called power set of 2. We need measure
theory to deal with uncountable (2.

A probability measure IP is a mapping
P: A—[0,1]

which satisfies certain conditions: the axioms of Kolmogorov (see Chapter 3).
For A € A we say that IP(A) is the probability of the event A.

There are several interpretations of probability. It can express one’s belief in a
certain event?. One can have a frequentist interpretation: the probability of an
event is the frequency of occurrences of this event if we repeat the experiment
infinitely often. One may want to define the probability of A as the number
of outcomes where A occurs divided by the total number of outcomes® (this
corresponds to the wuniform distribution on all possible outcomes). One may
also want to view probabilities (randomness) as complexity measures.

2For example: the probability that a nurse is a murderer is less that .00001 %.
3For example: the probability of life on a planet is equal to the number of planets with life
divided by the total number of planets.



2 Chapter 2: Discrete probability space

2.1. Basics
Let 2 be countable and A be the power set of (2.
Definition Consider a given mapping

p: Q—[0,1]
with > p(w) = 1. We define

P(A) =Y pw), A€ A

wEA

We call (2, A, P) a discrete probability space.
Two important discrete distributions

Geometric distribution Q := {1,2,...}, p(w) := (1 —p)* pwith0<p <1
a parameter.

Poisson distribution Q = {0,1,2,...}, p(w) := e *N\*/k! with A > 0 a pa-
rameter. We call this the Poisson(\)-distribution.

Random variables and expectation

Definition A random variable X is a mapping
X: Q=R

We write
P(X =2):=P({w: X(w) =2x}).

Definition The expectation of a random variable X is

EX :=) 2P(X =u).

Lemma Suppose X € {0,1,2,...}. Then

EX =) P(X > k).
k=0

Linearity of the expectation Let X and Y be random variables and a and
b be constants. Then

E (aX + bY> =dEX + UEY.
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2.2. Urn models
Consider an urn with & white balls and N — k red balls. Define p := k/N. We

sample at random n balls from the urn.
1) Sampling with replacement gives a binomial distribution:

IP(x white balls) = (Z)pa”(l —p)N 7 ze{0,1,...,n}.

2) Sampling without replacement gives a hypergeometric distribution:

K\ (N-K
IP(x white balls) = M,x €{0,1,...,n}N[n+ K — N, K].

N
(n)
Special case of binomial distribution: p = 1/2, n := 2n:

2
]P(X:.’ﬁ) = < n>2_2n, x € {0,1,,2n}
x

P(X =) = <2:> 27" \/71@7

where the last result follows from Stirling’s formula? .
2.3 Random walk
2.3.1. Definition of the random walk

Let Q = {w = (z1,...,zn) : =z € {£1} V¥ i} and let P be the uniform
distribution:

P(A) = :él, Ac A

Definition 2.1 Consider the random variables X;(w) := i-th component of
we,i=1,...,N. Let Sp:=0and forn=1,...,N, S, :=>"" | X;. Then
{Sn}), is called a random walk (starting at zero).

Theorem 2.1 We have

]P(SnZQk‘—n): <Z>2_n7 k2071,...,n.

Corollary It holds that

P(Ss, =0) = (**)272" ~ 1//nT,
P(Son_1 = 1) = P(S,, = 0).

“The notation a ~ b means a/b — 1 (n — 00).



2.3.2. First visit at level a # o and first return to zero
Let a € Z and
To :=min{n >1: S, = a}.
If no such n exists we define T, := oco.
Result

P(T, >n) - 0as N >n — oo,
ET, > 00cas N>n—

To prove this result we first prove

P(T, > n) =P(S, € (—a,al]), a #0,

]P(TO > 277,) = ]P(Sgn = 0)

Here in turn, we apply the reflection principle.

2.3.3. The arcsin law for the last visit at zero

Let N := 2N and
L=max{0<n<2N: S, =0}

Theorem 2.4 We have

P(L =2n) = (?) (2(]5__:)) 972N —0,1,...,N

Approximation For N — oo and n/N — z € [0, 1]
1 1

NTI’\/$(1 — )

P(L =2n) ~

This is called the arcsin law because

du = 2arcsin(y/z), 0 <z < 1.

r 1
/o T/ u(l —u)
2.3.4. The impossibility of a winning betting strategy

Definition 2.2 An event A C  is called observable at time n (0 <n < N) if
its indicator function 14 can be written as

la(w) = ¢n(X1(w), ..., Xn(w)), Vw e Q,

where ¢, : {£1}" — {0,1} is a given function. The collection A,, is defined as
all events A that are observable at time n.

Definition 2.3 The mapping
T: Q—{0,1,...,N}



is called a stopping time if {T'=n} € A,, n € {0,...,N}.

We now consider random variables {V; }4_,.

Definition A random variable V}, is called observable at time k — 1 if
Vk(w) = ¢k—1(X1(w), R ,kal(w)), Vwe Q,

where ¢p_1 : {£1}*~1 — R is a given function®.

Definition A betting strategy is {(V - S)n :== Y p_y ViXk: 1 <n < N}.

Impossibility of a winning betting strategy: For any stopping time T’
E(V-S)r=0.

This result can be proved by writing
Vi 1= HT >k} € A4

i.e. V it is observable at time k —1 (k=1,...,N).
2.4. Conditional probability

Definition Let IP(B) > 0. The conditional probability of A given B is defined

as
P(AN B)

PAIB) =~

Definition A partition of € is a collection of mutually disjoint events {B;}icr
such that U;c;B; = Q.

Theorem 2.7 (Law of total probability). Let {B;}icr be a partition of Q such
that P(B;) > 0 for all i. Then

P(A) =Y P(A[B)P(B)).

el

Bayes’ rule: When both IP(A) > 0 and P(B) > 0:

_ P(B)
P(BI4) = P(AIB) -
Corollary
P(BA) _ PAB)  P(B)
P(B¢[4) — P(A[B) P(5°)
——
posterior odds likelihood ratio prior odds

5These are not the same functions as used in Definition 2.2.



Theorem 2.9 Let {B;}icr be a partition of Q such that P(B;) > 0 for all i.
Then for P(A) >0

P(A|B)P(Bi)
2 jer P(AIB))P(B;)’

P(B;|A) =

2.5. Conditional expectation for discrete random variables

Let X and Y be two discrete random variables. We define the conditional
expectation of X given Y =y as®

E(X|Y =vy): Zx]P =z|lY =y).

Note that E(X|Y = y) is a function of y. Let us write this as
E(Xy) = h(y).
The conditional expectation of X given Y is
E(X|Y) :=h(Y).

Observe that E(X|Y) is a random variable (in this case a discrete one).

Theorem (Iterated expectations)

E (]E(X|Y)> —EX.

Let X be a random variable which we want to predict using the random variable
Y by some function of Y, say g(Y). We then call E(X — g(Y))? the (squared)
prediction error.

Theorem 2.10 The minimizer over all functions g : R — R of B(X — g(Y))?
is given by g(Y) =E(X|Y).

2.6 Independence

Definition 2.6 The events A and B are called independent if
P(ANB)=P(A)P(B).
The events {A;};cs are called pairwise independent if

5We consider only values of y with P(Y = y) > 0.



They are called independent if for all I C J

P(Nierds) = [ P(4).

el

The random variables Xi, ..., X, are called independent if

P(X1=a1,..., X0 =Xp) = [[P(Xi = 2:) ¥ (z1,...,20) €R™

Note: the events {A;} are independent iff their indicator functions {l4,} are
independent.

Lemma 2.4 Suppose X1,..., X, are independent. Then

E <f[1 Xz-> = fllEXZ

2.6.2. The binomial distribution

Let X4,..., X, be independent with

Then
n

P(S, =k) = <k>pk(1 —p)"* k=0,1,...,n.

In other words, S, has the binomial distribution with parameters n and p
(Bin(n, p)-distribution).

Approximation of the binomial distribution by the normal distribu-
tion

The standard normal distribution We call

J,‘2

1
], reR

o) = = [—

the density of the standard normal distribution. We call

2

O(z) = /_x d(u)du, v e R
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the distribution function of the standard normal distribution.

Theorem 2.11 (de Moivre-Laplace). Let p be fized and let A > 0 be a fized
constant (i.e. both not depending on n). Suppose k grows with n and satisfies
|k —np| < Ay/n. Then for n — oo

P<sn=k>~1¢<’“‘“>,

g g

where p :=np and o := np(1 — p).
2.6.3. The Poisson distribution

Approximation of the binomial distribution by the Poisson distribu-
tion

Suppose X has the binomial distribution with parameters n and p where

p=—
n
for some A > 0 not depending on n. Then for n — oo and k fixed

NG

P(X =k)~e Tk

In other words, X is then approximately Poisson distributed.
Some further properties of the Poisson distribution

Theorem 2.13 Let X, and Xo be independent and suppose that for all k €
{0,...,n} and alln € {0,1,2,...}

P(X1 = k| X1+ Xo =n) = <Z> 9"

(i.e., given the sum X1 + Xo = n, the random variable X1 has a bin(n, 3)-

distribution). Then there is a X > 0 such that both X1 as well as X9 have a
Poisson distribution with parameter X.

Theorem 2.14 Let X, and X be independent, and suppose’
X, ~P Poisson(A1), Xo N Poisson(Az).

Then
X1+ X9 ~D POiSSOIl()\l + )\2)

"The notation ~” means “has distribution”
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