D-MATH Prof. Peter S. Jossen

Exercise Sheet 5

1. Consider the complex torus $X = \mathbb{C}^g / \Omega \mathbb{Z}^g \oplus \mathbb{Z}^g$. The Néron-Severi group NS(X) can be considered as the group of alternating forms on \mathbb{R}^{2g} , integer-valued on \mathbb{Z}^{2g} , which induce a Hermitian form via the \mathbb{R} -linear isomorphism $\mathbb{R}^{2g} \xrightarrow{\sim} \mathbb{C}^g$ sending $x \mapsto (\Omega | \mathbb{I}_q) x$. Let E be an alternating form on \mathbb{R}^{2g} with matrix

$$\begin{pmatrix} A & B \\ -^t B & C \end{pmatrix} \in M_{2g}(\mathbb{R}).$$

Show that the following conditions are equivalent:

- (i) $E \in NS(X)$
- (ii) $A, B, C \in M_q(\mathbb{Z})$ and $A BZ + {}^tZ^tB + {}^tZCZ = 0$.

Use this to find the rank of NS(X) when X is a very general torus of dimension $g \ge 2$.

- **2.** Let X be a complex torus of dimension g. The *Picard number* $\varrho(X)$ of X is by definition the rank of NS(X). Show that $\varrho(X) \leq h^{1,1}(X) = g^2$.
- **3.** (*Theorem of the Cube*)
 - a) Let X_1 , X_2 and X_3 be complex tori and L a line bundle on $X_1 \times X_2 \times X_3$ such that the restrictions of L to $X_1 \times X_2 \times \{0\}$, $X_1 \times \{0\} \times X_3$ and $\{0\} \times X_2 \times X_3$ are trivial. Show that L is trivial. (*Hint:* use canonical factors.)
 - b) Generalise this to products of n > 3 tori.
- **4.** Let X be a complex torus and $n \neq 0$ an integer. Denote by $n_X : X \longrightarrow X$ the map $x \mapsto n \cdot x$. Prove that the endomorphism $L \mapsto n_X^* L$ of Pic(X) induces the *n*-th power map on X^{\vee} and the n^2 -th power map on NS(X).