Complex Abelian Varieties

1. Let X_1 and X_2 be abelian varieties and \mathcal{L} an ample line bundle on $X_1 \times X_2$. We wish to establish the inequality

 $\dim H^0(X_1 \times X_2, \mathcal{L}) \le \dim H^0(X_1, \mathcal{L}|_{X_1}) \dim H^0(X_2, \mathcal{L}|_{X_2}),$

with equality if and only if \mathcal{L} is isomorphic to $\mathcal{L}|_{X_1} \boxtimes \mathcal{L}|_{X_2}$.

- a) For j = 1, 2 write $X_j = V_j/\Lambda_j$ and $\mathcal{L}_j := \mathcal{L}|_{X_j}$. Let \mathcal{B}_j be a basis for the lattice Λ_j and \mathcal{C}_j a complex basis for V_j , orthonormal with respect to the Hermitian form associated to $c_1(\mathcal{L}_j)$. Let P_j be the change of basis matrix from the \mathbb{R} -basis \mathcal{B}_j to the \mathbb{R} -basis $\mathcal{C}_j \sqcup i\mathcal{C}_j$ of V_j . Prove that dim $H^0(X_j, \mathcal{L}_j) = (\det(P_j))^{-1}$.
- **b**) Let A be an arbitrary square matrix, and let

$$H = \left(\begin{array}{cc} I & A \\ \frac{t}{A} & I \end{array}\right)$$

be a positive definite Hermitian matrix. Show that $det(H) \leq 1$, and that equality holds if and only if A = 0.

- c) Deduce the desired result.
- **2.** Let $X = V/\Lambda$ be a complex torus and $u : X \longrightarrow X^{\vee}$ a group homomorphism. Show that the following two conditions are equivalent:
 - i) there exists a line bundle L on X such that $u = \phi_L$;
 - ii) $u = u^{\vee}$.

Do the positive and negative eigenspaces of the involution $u \mapsto u^{\vee}$ of $\text{Hom}(X, X^{\vee})$ have the same rank?

- **3.** We say that a number field K is *totally real* if the image of each embedding of K into \mathbb{C} lies inside \mathbb{R} . We say that a number field L is a CM field if there is no embedding of L into \mathbb{R} and there exists a totally real field $K \subseteq L$ such that [L:K] = 2.
 - a) Give interesting examples of totally real number fields and CM fields.

b) Let K be a totally real number field of degree g and \mathcal{O}_K be its ring of integers. Let $\sigma_1, \ldots, \sigma_g$ be the embeddings of K into R. Let τ_1, \ldots, τ_g be complex numbers with positive imaginary part. Show that

 $\Lambda := \{ (\sigma_1(p)\tau_1 + \sigma_1(q), \dots, \sigma_g(p)\tau_g + \sigma_g(q)) | p, q \in \mathcal{O}_K \} \subseteq \mathbb{C}^g$

is a lattice and that $X = \mathbb{C}^g / \Lambda$ is an abelian variety.

- c) Show that the algebra $\operatorname{End}_{\mathbb{Q}}(X)$ contains K.
- **d)** Let *L* be a CM-field. We call a *CM-type* a tuple (ξ_1, \ldots, ξ_g) of pairwise nonconjugate complex embeddings. Find an analog of **b**) and **c**) in this situation.