10.1. Fact 1 about quotients Let $1 \leq p<\infty$ and $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$. Define, for fixed $1 \leq i \leq n$ and $h \in \mathbb{R} \backslash\{0\}$ by

$$
u^{h}(x):=\frac{u\left(x+h e_{i}\right)-u(x)}{h} .
$$

Prove that

$$
\left\|u^{h}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\left\|\partial_{i} u\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} .
$$

Hint: Start with $u \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and use the fundamental theorem of calculus.
10.2. Fact 2 about quotients For $1<p<\infty, u \in L^{p}\left(\mathbb{R}^{n}\right)$, we define u^{h} as in 10.1. Furthermore, we assume that

$$
\sup _{h>0}\left\|u^{h}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}<\infty
$$

Prove that u has a weak derivative in the i-th direction in $L^{p}\left(\mathbb{R}^{n}\right)$.
Hint: Prove that $\int_{\mathbb{R}^{n}} \varphi u^{h}=\int_{\mathbb{R}^{n}} \varphi^{-h} u$ for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and combine this with Banach-Alaoglou.
10.3. Laplace on \mathbb{R}^{n}. The purpose of this exercise is to establish the similar estimate for Δ as in the lecture course for $\Omega=\mathbb{R}^{n} .{ }^{1}$. The main difference is that for working on \mathbb{R}^{n}, the expression $K_{j} * f$ makes only sense for compactly supported functions, thus we indicate steps in this exercise to circumvent these difficulties.

We want to prove the following, for all $n \in \mathbb{N}, 1<p<\infty$, there is $C>0$ such that for all $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, we have

$$
\begin{equation*}
\|\nabla u\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq \sup _{0 \neq \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)} \frac{\int_{\mathbb{R}^{n}}\langle\nabla \varphi, \nabla u\rangle}{\|\nabla \varphi\|_{L^{q}\left(\mathbb{R}^{n}\right)}} . \tag{1}
\end{equation*}
$$

(a) Prove there is a unique bounded operator $T: L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ such that

$$
T f=\sum_{i=1}^{n} \nabla\left(K_{i} * f_{i}\right)
$$

for all $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$. Hint: Use Calderòn-Zygmund.

[^0](b) For $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, there exists $f \in L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ such that for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, we have
$$
\int_{\mathbb{R}^{n}}\langle f, \nabla \varphi\rangle=\int_{\mathbb{R}^{n}}\langle\nabla u, \nabla \varphi\rangle
$$
where $\|f\|_{L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)}=\sup _{0 \neq \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)} \frac{\int_{\mathbb{R}^{n}}|\langle\nabla u, \nabla \varphi\rangle|}{\|\nabla\|_{L^{q}\left(\mathbb{R}^{n}\right)}}$. Hint: Use Hahn-Banach.
(c) With f, and u as in (b), prove that $T f=\nabla u$.

Hint:

(i) Prove that $T \nabla \varphi=\nabla \varphi$ for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.
(ii) For $g \in L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $h \in L^{q}$ with $\frac{1}{p}+\frac{1}{q}=1$, prove that

$$
\int_{\mathbb{R}^{n}}\langle T g, h\rangle=\int_{\mathbb{R}^{n}}\langle g, T h\rangle .
$$

(iii) For $g \in L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, prove that $\int_{\mathbb{R}^{n}}\langle g, \nabla \varphi\rangle=\int_{\mathbb{R}^{n}}\langle T g, \nabla \varphi\rangle$.
(iv) For $g \in L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, give a sequence $\varphi_{\nu} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\left\|T g-\nabla \varphi_{\nu}\right\|_{L^{p}} \rightarrow 0$ as $\nu \rightarrow \infty$.
(v) Prove that $T^{2}=T$.
(vi) Prove that for $g \in L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ the following are equivalent.
$(\alpha) T g=0$
$(\beta) \int_{\mathbb{R}^{n}}\langle g, \nabla \varphi\rangle=0$ for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.
Hint: Prove for $(\beta) \Rightarrow(\alpha)$ that $\int_{\mathbb{R}^{n}}\left\langle T^{2} g, \varphi\right\rangle=0$ for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$.
(vii) Conclude.
(d) Prove (1).
10.4. Why -1? For $1<p<\infty$ and $\Omega \subset \mathbb{R}^{n}$ bounded and open, prove that the weak derivative $\partial_{i} u: C_{0}^{\infty}(\Omega) \rightarrow \mathbb{R}$ of a function $u \in L^{p}(\Omega)$ can be extended in a unique way to an element of $W^{-1, p}(\Omega)$. Thereby, we define a bounded linear operator $\partial_{i}: L^{p}(\Omega) \rightarrow W^{-1, p}(\Omega)$ and so the notation seems natural.

Please hand in your solutions for this sheet by Monday 09/05/2016.

[^0]: ${ }^{1}$ Cf. the notes provided on the webpage.

