10.1. Fact 1 about quotients Let $1 \leq p<\infty$ and $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$. Define, for fixed $1 \leq i \leq n$ and $h \in \mathbb{R} \backslash\{0\}$ by

$$
u^{h}(x):=\frac{u\left(x+h e_{i}\right)-u(x)}{h}
$$

Prove that

$$
\left\|u^{h}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\left\|\partial_{i} u\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

Hint: Start with $u \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and use the fundamental theorem of calculus.
Solution: Let $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. From the fundamental theorem of calculus, we know for $f_{x}: \mathbb{R} \rightarrow \mathbb{R}: t \mapsto u\left(x+t e_{i}\right)$ that

$$
\frac{u\left(x+h e_{i}\right)-u(x)}{h}=\frac{1}{h} \int_{0}^{h} \frac{\mathrm{~d}}{\mathrm{~d} t} f_{x} \mathrm{~d} t=\frac{1}{h} \int_{0}^{h}\left(\partial_{i} u\right)\left(x+t e_{i}\right) \mathrm{d} t
$$

where $x \in \mathbb{R}^{n}$. Now $\frac{\mathrm{d} t}{h}$ is a probability measure on $[0, h]$ and $t \rightarrow t^{p}$ is convex, therefore by Jensen's inequality, we have for all $x \in \mathbb{R}^{n}$

$$
\left|u^{h}(x)\right|^{p}=\left|\frac{1}{h} \int_{0}^{h} \int_{0}^{h}\left(\partial_{i} u\right)\left(x+t e_{i}\right) \mathrm{d} t\right|^{p} \leq \frac{1}{h} \int_{0}^{h}\left|\partial_{i} u\left(x+h e_{i}\right)\right|^{p} \mathrm{~d} t
$$

Hence, by Fubini's theorem, we get

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left|u^{h}(x)\right|^{p} \mathrm{~d} x & \leq \int_{\mathbb{R}^{n}} \frac{1}{h} \int_{0}^{h}\left|\partial_{i} u\left(x+h e_{i}\right)\right|^{p} \mathrm{~d} t \mathrm{~d} x \\
& =\frac{1}{h} \int_{0}^{h} \int_{\mathbb{R}^{n}}\left|\partial_{i} u\left(x+h e_{i}\right)\right|^{p} \mathrm{~d} x \mathrm{~d} t \\
& =\frac{1}{h} \int_{0}^{h}\left\|\partial_{i} u\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p} \mathrm{~d} t=\left\|\partial_{i} u\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p}
\end{aligned}
$$

Now by 7.5 , we have for $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$, there is a sequence $u_{j} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $u_{j} \rightarrow u$ in $W^{1, p}\left(\mathbb{R}^{n}\right)$. For u_{j}, we have

$$
\left\|u_{j}^{h}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\left\|\partial_{i} u_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

and, since

$$
u_{j}^{h} \rightarrow u^{h}, \quad \partial_{i} u_{j} \rightarrow \partial_{i} u \quad \text { in } L^{p}\left(\mathbb{R}^{n}\right)
$$

we can pass to the limit in theses inequalites and get

$$
\left\|u^{h}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\left\|\partial_{i} u\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

10.2. Fact 2 about quotients For $1<p<\infty, u \in L^{p}\left(\mathbb{R}^{n}\right)$, we define u^{h} as in 10.1. Furthermore, we assume that

$$
\sup _{h>0}\left\|u^{h}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}<\infty
$$

Prove that u has a weak derivative in the i-th direction in $L^{p}\left(\mathbb{R}^{n}\right)$.
Hint: Prove that $\int_{\mathbb{R}^{n}} \varphi u^{h}=\int_{\mathbb{R}^{n}} \varphi^{-h} u$ for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and combine this with Banach-Alaoglou.

Solution: Let us follow the hint, and establish the identity

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \varphi(x) u^{h}(x) \mathrm{d} x & =-\int_{\mathbb{R}^{n}} \frac{\varphi(x)}{h} u(x) \mathrm{d} x+\int_{\mathbb{R}^{n}} \frac{\varphi(x)}{h} u\left(x+h e_{i}\right) \mathrm{d} x \\
& =-\int_{\mathbb{R}^{n}} \frac{\varphi(x)}{h} u(x) \mathrm{d} x+\int_{\mathbb{R}^{n}} \frac{\varphi\left(x-h e_{i}\right)}{h} u(x) \mathrm{d} x \\
& =\int_{\mathbb{R}^{n}} \varphi^{-h}(x) u(x) \mathrm{d} x
\end{aligned}
$$

As all the $L^{p}\left(\mathbb{R}^{n}\right)$ under consideration are reflexive and separable, $\sup _{h>0}\left\|u^{h}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}<$ ∞, gives us the existence of a weakly convergent subsequence $h_{k} \rightarrow 0$. Call the limit of this sequence $u_{i} \in L^{p}\left(\mathbb{R}^{n}\right)$. This give for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ that

$$
\int_{\mathbb{R}^{n}} u_{i} \varphi=\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} u^{h_{k}} \varphi=\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} u \varphi^{-h_{k}} .
$$

Now, due to compact support, $\varphi^{h_{k}}$ converges uniformly to $-\partial_{i} \varphi$, so in particular, in $L^{q}\left(\mathbb{R}^{n}\right)$ for $\frac{1}{q}+\frac{1}{p}=1$. Thus by Hölder inequality, we have that

$$
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} u \varphi^{-h_{k}}=-\int_{\mathbb{R}^{n}} u \partial_{i} \varphi .
$$

This proves that u has $u_{i} \in L^{p}\left(\mathbb{R}^{n}\right)$ as the i-th weak derivative.
10.3. Laplace on \mathbb{R}^{n}. The purpose of this exercise is to establish the similar estimate for Δ as in the lecture course for $\Omega=\mathbb{R}^{n} .{ }^{1}$. The main difference is that for working on \mathbb{R}^{n}, the expression $K_{j} * f$ makes only sense for compactly supported functions, thus we indicate steps in this exercise to circumvent these difficulties.

We want to prove the following, for all $n \in \mathbb{N}, 1<p<\infty$, there is $C>0$ such that for all $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, we have

$$
\begin{equation*}
\|\nabla u\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq \sup _{0 \neq \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)} \frac{\int_{\mathbb{R}^{n}}\langle\nabla \varphi, \nabla u\rangle}{\|\nabla \varphi\|_{L^{q}\left(\mathbb{R}^{n}\right)}} . \tag{1}
\end{equation*}
$$

[^0](a) Prove there is a unique bounded operator $T: L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ such that
$$
T f=\sum_{i=1}^{n} \nabla\left(K_{i} * f_{i}\right)
$$
for all $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$. Hint: Use Calderòn-Zygmund.
(b) For $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, there exists $f \in L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ such that for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, we have
$$
\int_{\mathbb{R}^{n}}\langle f, \nabla \varphi\rangle=\int_{\mathbb{R}^{n}}\langle\nabla u, \nabla \varphi\rangle
$$
where $\|f\|_{L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)}=\sup _{0 \neq \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)} \frac{\int_{\mathbb{R}^{n}}|\langle\nabla u, \nabla \varphi\rangle|}{\|\nabla \varphi\|_{L^{q}\left(\mathbb{R}^{n}\right)}}$. Hint: Use Hahn-Banach.
(c) With f, and u as in (b), prove that $T f=\nabla u$.

Hint:

(i) Prove that $T \nabla \varphi=\nabla \varphi$ for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.
(ii) For $g \in L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $h \in L^{q}$ with $\frac{1}{p}+\frac{1}{q}=1$, prove that

$$
\int_{\mathbb{R}^{n}}\langle T g, h\rangle=\int_{\mathbb{R}^{n}}\langle g, T h\rangle .
$$

(iii) For $g \in L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, prove that $\int_{\mathbb{R}^{n}}\langle g, \nabla \varphi\rangle=\int_{\mathbb{R}^{n}}\langle T g, \nabla \varphi\rangle$.
(iv) For $g \in L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, give a sequence $\varphi_{\nu} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\left\|T g-\nabla \varphi_{\nu}\right\|_{L^{p}} \rightarrow 0$ as $\nu \rightarrow \infty$.
(v) Prove that $T^{2}=T$.
(vi) Prove that for $g \in L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ the following are equivalent.
(α) $T g=0$
$(\beta) \int_{\mathbb{R}^{n}}\langle g, \nabla \varphi\rangle=0$ for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.
Hint: Prove for $(\beta) \Rightarrow(\alpha)$ that $\int_{\mathbb{R}^{n}}\left\langle T^{2} g, \varphi\right\rangle=0$ for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$.
(vii) Conclude.
(d) Prove (1).

Solution:

(a) Let $T_{j i}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)$ be the usual bounded operators from the CalderònZygmund inequality, which on smooth functions $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ are given by $T_{j i}(\varphi)=$ $\partial_{j}\left(K_{i} * \varphi\right)$. Now given $f \in L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, we can construct the operator $T: L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \rightarrow$ $L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ by $(T f)_{j}=\sum_{i=1}^{n} T_{j i} f_{i}$. This is indeed bounded by

$$
\|f\|_{L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)}=\sum_{j=1}^{n}\left\|\sum_{i=1}^{n} T_{j i} f_{i}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq \sum_{j, i=1}^{n}\left\|T_{j i} f_{i}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)}
$$

where

$$
C=n \max _{j, i=1, \ldots, n}\left\|T_{i j}\right\| .
$$

So T is a bounded operator and restricts to the right expression on $C_{0}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$.
(b) Define $Y:=\left\{\nabla \varphi: \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right\} \subset L^{q}$ and define on Y the bounded linear functional $\Lambda: Y \rightarrow \mathbb{R}$ by

$$
\Lambda(\nabla \varphi)=\int_{\mathbb{R}^{n}}\langle\nabla u, \nabla \varphi\rangle
$$

Then by Hahn-Banach, we can extend this functional to a bounded linear functional $\Lambda: L^{q} \rightarrow \mathbb{R}$ with the same operator norm

$$
\|\Lambda\|=\sup _{0 \neq \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)} \frac{\int_{\mathbb{R}^{n}}\langle\nabla \varphi, \nabla u\rangle}{\|\nabla \varphi\|_{L^{q}\left(\mathbb{R}^{n}\right)}} .
$$

Due to the identification, $L^{p}=\left(L^{q}\right)^{*}$, there is a function $f \in L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ such that

$$
\int_{\mathbb{R}^{n}}\langle f, g\rangle=\Lambda(g)
$$

for all $g \in L^{q}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$. So in particular on Y, we get

$$
\int_{\mathbb{R}^{n}}\langle f, \nabla \varphi\rangle=\int_{\mathbb{R}^{n}}\langle\nabla u, \nabla \varphi\rangle
$$

for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Also $\|f\|_{L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)}=\|\Lambda\|$.
(c) (i) We have that $K *(\Delta \varphi)=\varphi$, so

$$
(T \nabla \varphi)_{j}=\partial_{j}\left(\sum_{i=1}^{n} K_{i} * \partial_{i} \varphi\right)=\partial_{j}(K * \Delta \varphi)=\partial_{j} \varphi
$$

where we used the fact that derivatives can be distributed freely over the factors of the convolution product.
(ii) Take $g_{k}, h_{k} \in C_{0}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ approximating g, h in the respective norms, then we see that it is enough by dominated convergence, to prove it for $g, h \in C_{0}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$. We calculate

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\langle T g, h\rangle & =\int_{\mathbb{R}^{n}}\left\langle\nabla\left(\sum_{i=1}^{n} K_{i} * g_{i}\right), h\right\rangle=-\int_{\mathbb{R}^{n}} \sum_{i, j=1}^{n} K_{i} * g_{i} \partial_{j} h_{j} \\
& =\int_{\mathbb{R}^{n}} \sum_{i, j=1}^{n} g_{i} K_{i} * \partial_{j} h_{j}=\int_{\mathbb{R}^{n}}\langle g, T h\rangle
\end{aligned}
$$

where the third equality uses $-K_{j}(-x)=K_{j}(x)$ and Fubini, the last equality uses $K_{i} * \partial_{j} h_{j}=\partial_{i}\left(K_{j} * h_{j}\right)$.
(iii) We use (i), to get

$$
\int_{\mathbb{R}^{n}}\langle g, \nabla \varphi\rangle=\int_{\mathbb{R}^{n}}\langle g, T \nabla \varphi\rangle=\int_{\mathbb{R}^{n}}\langle T g, \nabla \varphi\rangle
$$

(iv) For $g \in L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, we can approximate by functions of $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, and so we only need to prove it for $g \in C_{0}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$. Approximate for this function, $\sum_{i=1}^{n} K_{i} * g_{i}$ by smooth functions φ_{ν} in $W^{1, p}\left(\mathbb{R}^{n}\right)$, and then we get that

$$
\left\|T g-\nabla \varphi_{\nu}\right\|=\left\|\nabla\left(\sum_{i=1}^{n}\left(K_{i} * g_{i}\right)\right)-\nabla \varphi_{\nu}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq \|\left(\sum_{i=1}^{n}\left(K_{i} * g_{i}\right)-\varphi_{\nu} \|_{W^{1, p}\left(\mathbb{R}^{n}\right)} \rightarrow 0\right.
$$

as $\nu \rightarrow \infty$.
(v) Take φ_{ν} as in (iii) for $g \in L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, then from $\lim _{\nu \rightarrow \infty}\left\|T g-\nabla \varphi_{\nu}\right\|_{L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)}=0$, we get by boundedness, that $\lim _{\nu \rightarrow \infty}\left\|T^{2} g-T \nabla \varphi_{\nu}\right\|_{L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)}=0$. But by (i), we have $T \nabla \varphi_{\nu}=\nabla \varphi_{\nu}$, we get by uniqueness of limit in $L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ that $T^{2} g=T g$. As g was arbitrary, we get $T^{2}=T$.
(vi) For $(\alpha) \Rightarrow(\beta)$, we have by (iii), that $\int_{\mathbb{R}^{n}}\langle g, \nabla \varphi\rangle=\int_{\mathbb{R}^{n}}\langle T g, \nabla \varphi\rangle=0$. For the converse, take $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, then there is a sequence $\psi_{\nu} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, such that $\nabla \psi_{\nu} \rightarrow T \varphi$ in $L^{q}\left(/ R^{n}, \mathbb{R}^{n}\right)$. Then we get that

$$
\int_{\mathbb{R}^{n}}\left\langle T^{2} g, \varphi\right\rangle=\int_{\mathbb{R}^{n}}\langle T g, T \varphi\rangle=\lim _{\nu \rightarrow \infty} \int_{\mathbb{R}^{n}}\left\langle T g, \nabla \psi_{\nu}\right\rangle=\lim _{\nu \rightarrow \infty} \int_{\mathbb{R}^{n}}\left\langle g, \nabla \psi_{\nu}\right\rangle 0 .
$$

where the second equality comes from Hölder inequality and penultimate uses (iii). As φ was arbitrary, we have by the previous point that $T g=T^{2} g=0$.
(vii) In (b), we get for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, that $\int_{\mathbb{R}^{n}}\langle f-\nabla u, \nabla \varphi\rangle=0$, therefore we have $T f=T \nabla u=\nabla u$.
(d) As $\nabla u=T f$, we get

$$
\|\nabla u\|_{L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)} \leq\|T\|\|f\|_{L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)}=\|T\| \sup _{0 \neq \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)} \frac{\int_{\mathbb{R}^{n}}|\langle\nabla u, \nabla \varphi\rangle|}{\|\nabla \varphi\|}
$$

where we used the property of f.
10.4. Why -1? For $1<p<\infty$ and $\Omega \subset \mathbb{R}^{n}$ bounded and open, prove that the weak derivative $\partial_{i} u: C_{0}^{\infty}(\Omega) \rightarrow \mathbb{R}$ of a function $u \in L^{p}(\Omega)$ can be extended in a unique way to an element of $W^{-1, p}(\Omega)$. Thereby, we define a bounded linear operator $\partial_{i}: L^{p}(\Omega) \rightarrow W^{-1, p}(\Omega)$ and so the notation seems natural.
Solution: Indeed, we have for $\varphi \in C_{0}^{\infty}(\Omega)$ that

$$
\left|-\int_{\Omega} u \partial_{i} \varphi\right| \leq\|u\|_{L^{p}\left(\mathbb{R}^{n}\right)}\|\nabla \varphi\|_{L^{q}\left(\mathbb{R}^{n}\right)}=\|u\|_{L^{p}\left(\mathbb{R}^{n}\right)}\|\varphi\|_{W_{0}^{1, q}(\Omega)}
$$

where $\frac{1}{p}+\frac{1}{q}=1$. Hence, $\partial_{i} u$ can be extended by density in a unique way to a bounded linear functional on $W_{0}^{1, q}(\Omega)$ of operator norm at most $\|u\|_{L^{p}\left(\mathbb{R}^{n}\right)}$, which is by definition an element of $W^{-1, p}(\Omega)=\left(W_{0}^{-1, q}(\Omega)\right)^{*}$.

[^0]: ${ }^{1}$ Cf. the notes provided on the webpage.

