10.1. Fact 1 about quotients Let $1 \le p < \infty$ and $u \in W^{1,p}(\mathbb{R}^n)$. Define, for fixed $1 \le i \le n$ and $h \in \mathbb{R} \setminus \{0\}$ by

$$u^{h}(x) := \frac{u(x+he_{i}) - u(x)}{h}.$$

Prove that

$$\left\| u^h \right\|_{L^p(\mathbb{R}^n)} \le \left\| \partial_i u \right\|_{L^p(\mathbb{R}^n)}.$$

Hint: Start with $u \in C^{\infty}(\mathbb{R}^n)$ and use the fundamental theorem of calculus.

Solution: Let $u \in C_0^{\infty}(\mathbb{R}^n)$. From the fundamental theorem of calculus, we know for $f_x : \mathbb{R} \to \mathbb{R} : t \mapsto u(x + te_i)$ that

$$\frac{u(x+he_i)-u(x)}{h} = \frac{1}{h} \int_0^h \frac{\mathrm{d}}{\mathrm{d}t} f_x \, \mathrm{d}t = \frac{1}{h} \int_0^h (\partial_i u)(x+te_i) \, \mathrm{d}t$$

where $x \in \mathbb{R}^n$. Now $\frac{dt}{h}$ is a probability measure on [0, h] and $t \to t^p$ is convex, therefore by Jensen's inequality, we have for all $x \in \mathbb{R}^n$

$$\left|u^{h}(x)\right|^{p} = \left|\frac{1}{h}\int_{0}^{h}\int_{0}^{h}(\partial_{i}u)(x+te_{i}) \mathrm{d}t\right|^{p} \leq \frac{1}{h}\int_{0}^{h}\left|\partial_{i}u(x+he_{i})\right|^{p}\mathrm{d}t.$$

Hence, by Fubini's theorem, we get

$$\int_{\mathbb{R}^n} \left| u^h(x) \right|^p \, \mathrm{d}x \le \int_{\mathbb{R}^n} \frac{1}{h} \int_0^h \left| \partial_i u(x+he_i) \right|^p \mathrm{d}t \, \mathrm{d}x$$
$$= \frac{1}{h} \int_0^h \int_{\mathbb{R}^n} \left| \partial_i u(x+he_i) \right|^p \, \mathrm{d}x \, \mathrm{d}t$$
$$= \frac{1}{h} \int_0^h \left\| \partial_i u \right\|_{L^p(\mathbb{R}^n)}^p \, \mathrm{d}t = \left\| \partial_i u \right\|_{L^p(\mathbb{R}^n)}^p$$

Now by 7.5, we have for $u \in W^{1,p}(\mathbb{R}^n)$, there is a sequence $u_j \in C_0^{\infty}(\mathbb{R}^n)$ such that $u_j \to u$ in $W^{1,p}(\mathbb{R}^n)$. For u_j , we have

$$\left\| u_j^h \right\|_{L^p(\mathbb{R}^n)} \le \left\| \partial_i u_j \right\|_{L^p(\mathbb{R}^n)},$$

and, since

$$u_j^h \to u^h, \qquad \partial_i u_j \to \partial_i u \qquad \text{in } L^p(\mathbb{R}^n),$$

we can pass to the limit in theses inequalites and get

$$\left\| u^h \right\|_{L^p(\mathbb{R}^n)} \le \left\| \partial_i u \right\|_{L^p(\mathbb{R}^n)}.$$

 $28\mathrm{th}$ April 2016

1/6

10.2. Fact 2 about quotients For $1 , <math>u \in L^p(\mathbb{R}^n)$, we define u^h as in 10.1. Furthermore, we assume that

$$\sup_{h>0} \left\| u^h \right\|_{L^p(\mathbb{R}^n)} < \infty$$

Prove that u has a weak derivative in the *i*-th direction in $L^p(\mathbb{R}^n)$.

Hint: Prove that $\int_{\mathbb{R}^n} \varphi u^h = \int_{\mathbb{R}^n} \varphi^{-h} u$ for all $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ and combine this with Banach-Alaoglou.

Solution: Let us follow the hint, and establish the identity

$$\int_{\mathbb{R}^n} \varphi(x) u^h(x) \, \mathrm{d}x = -\int_{\mathbb{R}^n} \frac{\varphi(x)}{h} u(x) \, \mathrm{d}x + \int_{\mathbb{R}^n} \frac{\varphi(x)}{h} u(x + he_i) \, \mathrm{d}x$$
$$= -\int_{\mathbb{R}^n} \frac{\varphi(x)}{h} u(x) \, \mathrm{d}x + \int_{\mathbb{R}^n} \frac{\varphi(x - he_i)}{h} u(x) \, \mathrm{d}x$$
$$= \int_{\mathbb{R}^n} \varphi^{-h}(x) u(x) \, \mathrm{d}x$$

As all the $L^p(\mathbb{R}^n)$ under consideration are reflexive and separable, $\sup_{h>0} \left\| u^h \right\|_{L^p(\mathbb{R}^n)} < \infty$, gives us the existence of a weakly convergent subsequence $h_k \to 0$. Call the limit of this sequence $u_i \in L^p(\mathbb{R}^n)$. This give for all $\varphi \in C_0^\infty(\mathbb{R}^n)$ that

$$\int_{\mathbb{R}^n} u_i \varphi = \lim_{k \to \infty} \int_{\mathbb{R}^n} u^{h_k} \varphi = \lim_{k \to \infty} \int_{\mathbb{R}^n} u \varphi^{-h_k}.$$

Now, due to compact support, φ^{h_k} converges uniformly to $-\partial_i \varphi$, so in particular, in $L^q(\mathbb{R}^n)$ for $\frac{1}{q} + \frac{1}{p} = 1$. Thus by Hölder inequality, we have that

$$\lim_{k \to \infty} \int_{\mathbb{R}^n} u\varphi^{-h_k} = -\int_{\mathbb{R}^n} u\partial_i\varphi$$

This proves that u has $u_i \in L^p(\mathbb{R}^n)$ as the *i*-th weak derivative.

10.3. Laplace on \mathbb{R}^n . The purpose of this exercise is to establish the similar estimate for Δ as in the lecture course for $\Omega = \mathbb{R}^{n,1}$. The main difference is that for working on \mathbb{R}^n , the expression $K_j * f$ makes only sense for compactly supported functions, thus we indicate steps in this exercise to circumvent these difficulties.

We want to prove the following, for all $n \in \mathbb{N}$, 1 , there is <math>C > 0 such that for all $u \in C_0^{\infty}(\mathbb{R}^n)$, we have

$$\left\|\nabla u\right\|_{L^{p}(\mathbb{R}^{n})} \leq \sup_{0 \neq \varphi \in C_{0}^{\infty}(\mathbb{R}^{n})} \frac{\int_{\mathbb{R}^{n}} \left\langle \nabla \varphi, \nabla u \right\rangle}{\left\|\nabla \varphi\right\|_{L^{q}(\mathbb{R}^{n})}}.$$
(1)

28th April 2016

 $^{^{1}}$ Cf. the notes provided on the webpage.

(a) Prove there is a unique bounded operator $T: L^p(\mathbb{R}^n, \mathbb{R}^n) \to L^p(\mathbb{R}^n, \mathbb{R}^n)$ such that

$$Tf = \sum_{i=1}^{n} \nabla(K_i * f_i)$$

for all $f \in C_0^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$. **Hint:** Use Calderòn–Zygmund.

(b) For $u \in C_0^{\infty}(\mathbb{R}^n)$, there exists $f \in L^p(\mathbb{R}^n, \mathbb{R}^n)$ such that for all $\varphi \in C_0^{\infty}(\mathbb{R}^n)$, we have

$$\int_{\mathbb{R}^n} \left\langle f, \nabla \varphi \right\rangle = \int_{\mathbb{R}^n} \left\langle \nabla u, \nabla \varphi \right\rangle$$

where $||f||_{L^p(\mathbb{R}^n,\mathbb{R}^n)} = \sup_{0 \neq \varphi \in C_0^{\infty}(\mathbb{R}^n)} \frac{\int_{\mathbb{R}^n} |\langle \nabla u, \nabla \varphi \rangle|}{||\nabla \varphi||_{L^q(\mathbb{R}^n)}}$. **Hint:** Use Hahn-Banach.

(c) With f, and u as in (b), prove that $Tf = \nabla u$.

Hint:

- (i) Prove that $T\nabla\varphi = \nabla\varphi$ for all $\varphi \in C_0^\infty(\mathbb{R}^n)$.
- (ii) For $g \in L^p(\mathbb{R}^n, \mathbb{R}^n)$ and $h \in L^q$ with $\frac{1}{p} + \frac{1}{q} = 1$, prove that

$$\int_{\mathbb{R}^n} \left\langle Tg, h \right\rangle = \int_{\mathbb{R}^n} \left\langle g, Th \right\rangle.$$

- (iii) For $g \in L^p(\mathbb{R}^n, \mathbb{R}^n)$ and $\varphi \in C_0^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$, prove that $\int_{\mathbb{R}^n} \langle g, \nabla \varphi \rangle = \int_{\mathbb{R}^n} \langle Tg, \nabla \varphi \rangle$.
- (iv) For $g \in L^p(\mathbb{R}^n, \mathbb{R}^n)$, give a sequence $\varphi_{\nu} \in C_0^{\infty}(\mathbb{R}^n)$ with $||Tg \nabla \varphi_{\nu}||_{L^p} \to 0$ as $\nu \to \infty$.
- (v) Prove that $T^2 = T$.
- (vi) Prove that for $g \in L^p(\mathbb{R}^n, \mathbb{R}^n)$ the following are equivalent.
 - $(\alpha) Tg = 0$
 - (β) $\int_{\mathbb{R}^n} \langle g, \nabla \varphi \rangle = 0$ for all $\varphi \in C_0^\infty(\mathbb{R}^n)$.

Hint: Prove for $(\beta) \Rightarrow (\alpha)$ that $\int_{\mathbb{R}^n} \langle T^2 g, \varphi \rangle = 0$ for all $\varphi \in C_0^\infty(\mathbb{R}^n, \mathbb{R}^n)$.

- (vii) Conclude.
- (d) Prove (1).

Solution:

28th April 2016

(a) Let $T_{ji}: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ be the usual bounded operators from the Calderòn– Zygmund inequality, which on smooth functions $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ are given by $T_{ji}(\varphi) = \partial_j(K_i * \varphi)$. Now given $f \in L^p(\mathbb{R}^n, \mathbb{R}^n)$, we can construct the operator $T: L^p(\mathbb{R}^n, \mathbb{R}^n) \to L^p(\mathbb{R}^n, \mathbb{R}^n)$ by $(Tf)_j = \sum_{i=1}^n T_{ji}f_i$. This is indeed bounded by

$$\|f\|_{L^{p}(\mathbb{R}^{n},\mathbb{R}^{n})} = \sum_{j=1}^{n} \left\|\sum_{i=1}^{n} T_{ji}f_{i}\right\|_{L^{p}(\mathbb{R}^{n})} \le \sum_{j,i=1}^{n} \|T_{ji}f_{i}\|_{L^{p}(\mathbb{R}^{n})} \le C \|f\|_{L^{p}(\mathbb{R}^{n},\mathbb{R}^{n})}$$

where

$$C = n \max_{j,i=1,...,n} ||T_{ij}||.$$

So T is a bounded operator and restricts to the right expression on $C_0^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$.

(b) Define $Y := \{\nabla \varphi : \varphi \in C_0^{\infty}(\mathbb{R}^n)\} \subset L^q$ and define on Y the bounded linear functional $\Lambda : Y \to \mathbb{R}$ by

$$\Lambda(\nabla\varphi) = \int_{\mathbb{R}^n} \left\langle \nabla u, \nabla\varphi \right\rangle.$$

Then by Hahn-Banach, we can extend this functional to a bounded linear functional $\Lambda: L^q \to \mathbb{R}$ with the same operator norm

$$\|\Lambda\| = \sup_{0 \neq \varphi \in C_0^{\infty}(\mathbb{R}^n)} \frac{\int_{\mathbb{R}^n} \langle \nabla \varphi, \nabla u \rangle}{\|\nabla \varphi\|_{L^q(\mathbb{R}^n)}}.$$

Due to the identification, $L^p = (L^q)^*$, there is a function $f \in L^p(\mathbb{R}^n, \mathbb{R}^n)$ such that

$$\int_{\mathbb{R}^n} \left\langle f, g \right\rangle = \Lambda(g)$$

for all $g \in L^q(\mathbb{R}^n, \mathbb{R}^n)$. So in particular on Y, we get

$$\int_{\mathbb{R}^n} \left\langle f, \nabla \varphi \right\rangle = \int_{\mathbb{R}^n} \left\langle \nabla u, \nabla \varphi \right\rangle$$

for all $\varphi \in C_0^{\infty}(\mathbb{R}^n)$. Also $\|f\|_{L^p(\mathbb{R}^n,\mathbb{R}^n)} = \|\Lambda\|$.

(c) (i) We have that $K * (\Delta \varphi) = \varphi$, so

$$(T\nabla\varphi)_j = \partial_j (\sum_{i=1}^n K_i * \partial_i \varphi) = \partial_j (K * \Delta\varphi) = \partial_j \varphi$$

where we used the fact that derivatives can be distributed freely over the factors of the convolution product.

28th April 2016

4/6

(ii) Take $g_k, h_k \in C_0^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ approximating g, h in the respective norms, then we see that it is enough by dominated convergence, to prove it for $g, h \in C_0^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$. We calculate

$$\int_{\mathbb{R}^n} \langle Tg, h \rangle = \int_{\mathbb{R}^n} \left\langle \nabla(\sum_{i=1}^n K_i * g_i), h \right\rangle = - \int_{\mathbb{R}^n} \sum_{i,j=1}^n K_i * g_i \partial_j h_j$$
$$= \int_{\mathbb{R}^n} \sum_{i,j=1}^n g_i K_i * \partial_j h_j = \int_{\mathbb{R}^n} \langle g, Th \rangle$$

where the third equality uses $-K_j(-x) = K_j(x)$ and Fubini, the last equality uses $K_i * \partial_j h_j = \partial_i (K_j * h_j)$.

(iii) We use (i), to get

$$\int_{\mathbb{R}^n} \left\langle g, \nabla \varphi \right\rangle = \int_{\mathbb{R}^n} \left\langle g, T \nabla \varphi \right\rangle = \int_{\mathbb{R}^n} \left\langle Tg, \nabla \varphi \right\rangle$$

(iv) For $g \in L^p(\mathbb{R}^n, \mathbb{R}^n)$, we can approximate by functions of $C_0^{\infty}(\mathbb{R}^n)$, and so we only need to prove it for $g \in C_0^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$. Approximate for this function, $\sum_{i=1}^n K_i * g_i$ by smooth functions φ_{ν} in $W^{1,p}(\mathbb{R}^n)$, and then we get that

$$\|Tg - \nabla\varphi_{\nu}\| = \left\|\nabla(\sum_{i=1}^{n} (K_i * g_i)) - \nabla\varphi_{\nu}\right\|_{L^p(\mathbb{R}^n)} \le \left\|\left(\sum_{i=1}^{n} (K_i * g_i) - \varphi_{\nu}\right)\right\|_{W^{1,p}(\mathbb{R}^n)} \to 0$$

as $\nu \to \infty$.

(v) Take φ_{ν} as in (iii) for $g \in L^{p}(\mathbb{R}^{n}, \mathbb{R}^{n})$, then from $\lim_{\nu \to \infty} ||Tg - \nabla \varphi_{\nu}||_{L^{p}(\mathbb{R}^{n}, \mathbb{R}^{n})} = 0$, we get by boundedness, that $\lim_{\nu \to \infty} ||T^{2}g - T\nabla \varphi_{\nu}||_{L^{p}(\mathbb{R}^{n}, \mathbb{R}^{n})} = 0$. But by (i), we have $T\nabla \varphi_{\nu} = \nabla \varphi_{\nu}$, we get by uniqueness of limit in $L^{p}(\mathbb{R}^{n}, \mathbb{R}^{n})$ that $T^{2}g = Tg$. As g was arbitrary, we get $T^{2} = T$.

(vi) For $(\alpha) \Rightarrow (\beta)$, we have by (iii), that $\int_{\mathbb{R}^n} \langle g, \nabla \varphi \rangle = \int_{\mathbb{R}^n} \langle Tg, \nabla \varphi \rangle = 0$. For the converse, take $\varphi \in C_0^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$, then there is a sequence $\psi_{\nu} \in C_0^{\infty}(\mathbb{R}^n)$, such that $\nabla \psi_{\nu} \to T\varphi$ in $L^q(/\mathbb{R}^n, \mathbb{R}^n)$. Then we get that

$$\int_{\mathbb{R}^n} \left\langle T^2 g, \varphi \right\rangle = \int_{\mathbb{R}^n} \left\langle T g, T \varphi \right\rangle = \lim_{\nu \to \infty} \int_{\mathbb{R}^n} \left\langle T g, \nabla \psi_\nu \right\rangle = \lim_{\nu \to \infty} \int_{\mathbb{R}^n} \left\langle g, \nabla \psi_\nu \right\rangle 0.$$

where the second equality comes from Hölder inequality and penultimate uses (iii). As φ was arbitrary, we have by the previous point that $Tg = T^2g = 0$.

(vii) In (b), we get for all $\varphi \in C_0^{\infty}(\mathbb{R}^n)$, that $\int_{\mathbb{R}^n} \langle f - \nabla u, \nabla \varphi \rangle = 0$, therefore we have $Tf = T\nabla u = \nabla u$.

28th April 2016

(d) As $\nabla u = Tf$, we get

$$\|\nabla u\|_{L^p(\mathbb{R}^n,\mathbb{R}^n)} \le \|T\| \, \|f\|_{L^p(\mathbb{R}^n,\mathbb{R}^n)} = \|T\| \sup_{0 \neq \varphi \in C_0^\infty(\mathbb{R}^n)} \frac{\int_{\mathbb{R}^n} |\langle \nabla u, \nabla \varphi \rangle|}{\|\nabla \varphi\|}$$

where we used the property of f.

10.4. Why -1? For $1 and <math>\Omega \subset \mathbb{R}^n$ bounded and open, prove that the weak derivative $\partial_i u : C_0^{\infty}(\Omega) \to \mathbb{R}$ of a function $u \in L^p(\Omega)$ can be extended in a unique way to an element of $W^{-1,p}(\Omega)$. Thereby, we define a bounded linear operator $\partial_i : L^p(\Omega) \to W^{-1,p}(\Omega)$ and so the notation seems natural.

Solution: Indeed, we have for $\varphi \in C_0^{\infty}(\Omega)$ that

$$\left|-\int_{\Omega} u\partial_{i}\varphi\right| \leq \left\|u\right\|_{L^{p}(\mathbb{R}^{n})} \left\|\nabla\varphi\right\|_{L^{q}(\mathbb{R}^{n})} = \left\|u\right\|_{L^{p}(\mathbb{R}^{n})} \left\|\varphi\right\|_{W_{0}^{1,q}(\Omega)}$$

where $\frac{1}{p} + \frac{1}{q} = 1$. Hence, $\partial_i u$ can be extended by density in a unique way to a bounded linear functional on $W_0^{1,q}(\Omega)$ of operator norm at most $||u||_{L^p(\mathbb{R}^n)}$, which is by definition an element of $W^{-1,p}(\Omega) = (W_0^{-1,q}(\Omega))^*$.