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13.1. The fundamental solution.

(a) Arrive at the formula for Kt by solving an ODE on the Fourier side for t > 0 for
solutions u to the heat equation with u(t, ·) ∈ S(Rn). Hint: The letters x and ξ
somehow resemble themselves.

(b) Prove that Kt is the fundamental solution i.e. extend Kt by Kt ≡ 0 for t ≤ 0.
Define the distribution uK : S(Rn+1)→ R : ϕ→

∫
R×Rn K(t, x)ϕ(t, x) dtdx and prove

that in the distributional sense PuK = δ0 where δ0 is Dirac’s delta distribution
ϕ→ ϕ(0).

(c) Prove that there is C > 0 such that for every t > 0, ‖∇xKt‖L1(Rn,Rn) ≤
C√
t
.

Deduce that

‖∆xKt‖L1(Rn) ≤
C

t
,

∥∥∥∆2
xKt

∥∥∥ ≤ C

t2
.

Hint: Use Kt = Kt/2 ∗Kt/2 for the last inequality.

Solution:

(a) Assume for t ≥ 0, u(t, ·) ∈ S(Rn) is solution to the heat equation ∂tu = ∆u with
u(0, ·) = u0. Then taking the Fourier transform of this equation with respect to x, we
get with local notation G(u)(t, ξ) =

∫
Rn e

−i〈x,ξ〉u(t, x) dx,

∂tG(u)(t, ξ) = G(∂tu)(t, ξ) = G(∆u)(t, ξ) = − |ξ|2 G(u)(t, ξ)

for all (t, x) ∈ R+ × Rn. Thus for every ξ ∈ Rn, we solve the ODE in t to get

G(u)(t, ξ) = e−|ξ|
2tF(u0)(ξ)

for all ξ ∈ Rn and t ≥ 0. Now if we apply the inverse Fourier transform in ξ to this
formula for t > 0, then we find

u(t, x) = (Kt ∗ u0)(x)

for all t > 0 and x ∈ Rn, because of products going over to convolution products under
Fourier transforms and K̂t(ξ) = e−|ξ|

2t as can be found in the solution of exercise 12.2.

(b) Let ϕ ∈ C∞0 (Rn+1). We want to prove that Kt extended by zero for t ≤ 0, fulfils

I :=
∫
Rn+1

K(t, x)(−∂tϕ(t, x)−∆ϕ(t, x)) dxdt = ϕ(0, 0).
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So we calculate

I = lim
δ→0+

∫ ∞
δ

∫
Rn
Kt(t, x)(−∂tϕ(t, x)−∆ϕ(t, x)) dxdt

= lim
δ→0+

∫ ∞
δ

∫
Rn
P (Kt(t, x))ϕ dxdt+ lim

δ→0+

∫
Rn
Kδ(x)ϕ(δ, x) dx

= 0 + lim
δ→0+

∫
Rn
Kδ(x)(ϕ(δ, x)− ϕ(0, 0)) dx+ ϕ(0, 0)

= ϕ(0, 0)

where the first line uses dominated convergence, the second one uses integration by
part in the space variables (no boundary terms due to compact support.) and the
time variable (only one boundary term, the other one vanishes.). In the third line, we
use PKt = 0 for t > 0 and

∫
Rn Kt = 1 for t > 0. What remains to be proven is that

lim
δ→0+

∫
Rn
Kδ(x)(ϕ(δ, x)− ϕ(0, 0)) dx = 0

We use the fact proven in class that limδ→0+
∫
|x|≥ηKε(x) dx = 0 for all η > 0. Fix ε > 0.

Then, there is ρ > 0 such that for |(t, x)− (0, 0)| ≤ ρ, then |ϕ(t, x)− ϕ(0, 0)| < ε
2 .

Now for η = ρ
2 there is α > 0 such that for all 0 < δ < α,∫

|x|≥η
Kε(x) dx < ε

4 ‖ϕ‖L∞(Rn)
.

Now for δ ≤ min(α, ρ2), we have∣∣∣∣∫
Rn
Kδ(x)(ϕ(δ, x)− ϕ(0, 0)) dx

∣∣∣∣
≤ 2 ‖ϕ‖L∞(Rn)

∫
|x|≥ ρ2

Kδ(x) dx+ sup
|x|≤ ρ2

|ϕ(x, δ)− ϕ(0, 0)|
∫
B ρ

2
(0)
Kδ(x) dx

<
ε

2 + ε

2 = ε.

This proves that Kt is the fundamental solution of P .

(c) ∇xKt(x) = x
2tKt(x), so by rescaling ‖∇xKt(x)‖ = 1√

t
2

πn/2

∫
Rn e

−|x|2 |x| = C√
t
.

∆xKt(x) = ( |x|
2

4t2 −
n
2t)Kt(x), and so again by rescaling, we have ‖∆xKt‖L1(Rn) ≤

C
t
.

Now from ∆2
xKt = ∂2

tKt, we can write Kt = Kt/2 ∗Kt/2 and so

∆2
xKt = ∂2

tKt = 1
4(∂tKt/2) ∗ (∂tKt/2) = 1

4∆xKt/2 ∗∆xKt/2.

By Young’s inequality we have∥∥∥∆2
xKt

∥∥∥
L1(Rn)

= 1
4
∥∥∥∆xKt/2

∥∥∥2

L1(Rn)
≤ C2

t2
.
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13.2. Gelfand Triples. Let H be a Hilbert space, V ⊂ H be a dense subspace.
Suppose that V is a Hilbert space in its own right with an inner product 〈·, ·〉V .
Identify H with H∗ with the canonical isomorphism. Take ι : V → H the inclusion
map, and ι∗ : H∗ → V ∗ which are both injective and have dense image by FA I. Under
the identifications, u ∈ H is sent to V → R : v 7→ 〈u, v〉H . Thus

V ⊂ H ∼= H∗ ⊂ V ∗.

Take B : V ×V → R to be a symmetric bilinear form and suppose there are constants
δ > 0, c > 0, C > 0 such that

δ ‖v‖2
V − c ‖v‖

2
H ≤ B(v, v) ≤ C ‖v‖2

V

for all v ∈ V . Define A : dom(A)→ H by

dom(A) :=
{
u ∈ V : sup

v∈V

|B(u, v)|
‖v‖H

<∞
}
, 〈Au, v〉H := B(u, v) for all v ∈ V.

(a) Prove that A is self-adjoint.

Hint: Follow the hints given at the end of Remark 6.3.8.

(b) Prove that −A generates a strongly continuous semigroup.

Hint: Use Theorem 7.3.10.

(c) Recast the infinitesimal generators of Exercises 12.2 (p=2) and 12.3 in the light
of Gelfand triples.

Solution:

(a) That A is symmetric comes from B being symmetric. We start by proving that
A+ c1 : dom(A)→ H is bijective. We observe that for all x ∈ V , we have

δ ‖x‖2
V ≤ B(x, x) + c ‖x‖2

H ≤ C ‖x‖2
V + c ‖x‖2

H ≤ (C + C ′c) ‖x‖2
V .

where C ′ is the norm of ι. Thus V × V → R : (u, v) 7→ c 〈u, v〉H +B(u, v) is a scalar
product equivalent to 〈·, ·〉V on V . So it makes V also into a Hilbert space. Now by
Riesz representation theorem for Hilbert spaces, we have for f ∈ H, which defines a
linear functional on V by v 7→ 〈v, f〉H , that there is u ∈ V such that

c 〈u, v〉H +B(u, v) = 〈f, v〉H

for all v ∈ V . By Cauchy-Schwarz, we get that

sup
06=u∈V

|B(u, v)|
‖v‖H

≤ ‖f‖H + C ′ ‖v‖H <∞.
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Hence v ∈ dom(A) and cu + Au = f by density of V in H. So in particular, we
have that A + c1 : dom(A) → H is surjective. Also for all u ∈ dom(A), we have
Au+ cu = 0 that,

δ ‖u‖2
V ≤ B(u, u) + c ‖u‖2

H = 〈Au+ cu, u〉H = 0.

Thus this norm is zero so u = 0.

Now as for every v∗ ∈ V ∗, there is a unique u ∈ V such that B(u, ·) + c 〈u, ·〉H = v∗(·).
This extends the map c1 + A : dom(A) ⊂ V → H ⊂ V ∗ into an isomorphism from
V → V ∗ which sends dom(A) to H. Now as H ⊂ V ∗ is dense, so is dom(A) in V .

Next, let us prove that for u ∈ H, if there is c > 0 such that for all v ∈ dom(A), we
have

|〈u,Av〉H | ≤ c
√
B(v, v) + c ‖v‖2

H ,

then u ∈ V .

To prove this, we use density of dom(A) in V to extend the map v 7→ 〈u,Av〉H +
c 〈u, v〉H uniquely to a map v∗ ∈ V ∗. Then, there is as before, u′ ∈ V such that

B(u′, v) + c 〈u′, v〉 = v∗(v)

for all v ∈ V . Thereby, for v ∈ dom(A), we obtain

〈u′, Av〉H + c 〈u′, v〉H = B(u′, v) + c 〈u′, v〉 = 〈u,Av〉H + c 〈u, v〉H

by definition of A. As A+ c1 : dom(A)→ H is surjective, we have that u = u′ ∈ V .

Thus assume that u,w ∈ H such that for all v ∈ dom(A), we have

〈u,Av〉H = 〈w, v〉H .

By the previous argument, as we have

|〈u,Av〉H | ≤ ‖w‖H ‖v‖H ≤ ‖w‖H
√
B(v, v) + c ‖v‖2

H ,

we get u ∈ V . Thus, B(u, v) = 〈w, v〉H for all v ∈ dom(A), which, by density of
dom(A) in V , continues to hold for all v ∈ V . This exactly means that u ∈ dom(A)
and that Au = w. Thus proving that A is self-adjoint.

(b) By the previous point, −A : dom(A)→ H is self-adjoint.

〈−Av, v〉 = −B(v, v) ≤ c ‖u‖H − δ ‖u‖V ≤ c ‖u‖2
H .

Hence the hypotheses of 7.3.10 are met and so −A is infinitesimal generator of a
strongly continuous self-adjoint semigroup.
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(c) For exercise 12.2., we takeH = L2(Rn), V = W 1,2(Rn) andB(u, v) = 〈∇u,∇v〉L2(Rn)

for all (u, v) ∈ V × V . Then we get the lower bound B(u, u) = ‖∇u‖2
L2(Rn) =

‖u‖2
W 1,2(Rn) − ‖u‖

2
L2(Rn), so c = δ = 1. Furthermore, we have B(u, u) ≤ ‖u‖W 1,2(Rn).

So C = 1, and by elliptic regularity, we get A = −∆ : W 2,2(Rn)→ L2(Rn).

For exercise 12.3, we take V = W 1,2
0 (Ω), H = L2(Ω), B(u, v) :=

∫
Ω ∂iu aij ∂ju for all

(u, v) ∈ V × V , then we can take c = 0. The lower bound is given by ellipticity of the
aij and the upper bound by boundedness of the coefficients. By elliptic regularity, we
have A = −L : W 2,2(Ω) ∩W 1,2

0 (Ω)→ L2(Ω).

13.3. Maximal principle and exponential decay. Let T > 0 and let Ω ⊂ Rn

be a bounded, open domain. Set ΩT := (0, T ]×Ω and ΓT := ({0}×Ω)∪ ([0, T ]×∂Ω).
Let Lu = ∑

i,j ai,j∂i∂ju + ∑n
i=1 bi∂iu + cu for u ∈ C2(ΩT ), aij = aji, bi, c ∈ C0(ΩT )

and i, j = 1, . . . , n with
n∑

i,j=1
aij(t, x)ξiξj ≥ δ |ξ|2

for all (t, x) ∈ ΩT and all ξ ∈ Rn. Put Pu = Lu− ∂tu.

(a) Let c ≤ 0, u ∈ C2(ΩT ) ∩ C0(ΩT ), Pu ≥ 0, then prove that

max
ΩT

u ≤ max
ΓT

u+

where u+(x) := max(u(x), 0) is the positive part of u.

Hint: Mimic the proof of the maximum principle for c = 0 (Theorem 2).

(b) Prove that if there is γ ∈ R such that −c ≥ γ > 0, then for g ∈ L∞(Ω) and
u ∈ C2(ΩT ) ∩ C0(ΩT ) solution of

Pu = 0 on ΩT

u = 0 on (0, T )× ∂Ω
u = g on {0} × Ω,

we get

|u(t, x)| ≤ ‖g‖L∞(Rn) e
−γt

for all (t, x) ∈ ΩT .

Solution:
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(a) We simply repeat the proof of Theorem 2 (maximum principle for parabolic
equations) word for word.

We assumeM := maxΩT u > maxΓT u
+ ≥ 0. Choose (t0, x0) ∈ ΩT with u(t0, x0) = M .

Let θ > 0 such that

v(t, x) = e−θ(t−t0)−|x−x0|2

has the property

Pv(t, x) =
4

n∑
i,j=1

aij(t, x)(xi − (x0)i)(xj − (x0)j)− 2
n∑
i=1

aii(t, x)

−2
n∑
i=1

bi(t, x)(xi − (x0)i) + c(t, x) + θ

]
e−θ(t−t0)−|x−x0|2 > 0

for all (t, x) ∈ ΩT which is possible as Ω and T > 0 are bounded. Next choose ε > 0
such that

ε(eθT − 1) < M − sup
ΓT

u+.

Define uε := u+ εv. Then we still have

max
ΓT

u+
ε ≤ max

ΓT
u++εmax

ΓT
vε ≤ max

ΓT
u+εeθT < M+ε = u(t0, x0)+εv(t0, x0) ≤ max

ΩT
uε,

but now we also have

Puε = Pu+ εPv > 0.

Therefore, choose (t1, x1) ∈ ΩT with uε(t1, x1) = maxΩT uε > maxΓT uε ≥ 0. Then,
we have

Puε(t1, x1) =
n∑

i,j=1
aij(t1, x1)∂i∂juε(t1, x1) +

n∑
i=1

bi(t1, x1)∂iuε(t1, x1)

+ c(t1, x1)uε(t1, x1)− ∂tuε(t1, x1) ≤ 0

where every single summands is ≤ 0 due to uε attaining a maximum and c ≤ 0. This
provides us with a contradiction.

(b) We look at v(t, x) = u(t, x)− ‖g‖L∞(Ω) e
−γt for (t, x) ∈ ΩT . Then we see that as

u|(0,∞)×∂Ω = 0, that

max
ΓT

v ≤ 0.
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Furthermore, we have that

Pv(t, x) = 0− c ‖g‖L∞(Ω) e
−γt − γ ‖g‖L∞(Ω) e

−γt ≥ 0.

for (t, x) ∈ ΩT . Thus, we may apply (a), to conclude that

max
ΩT

v ≤ 0.

This translates into

u(t, x) ≤ ‖g‖L∞(Ω) e
−γt.

for (t, x) ∈ ΩT . The same argument with ṽ(t, x) = −u(t, x)− ‖g‖L∞(Ω) e
−γt delivers

the second inequality

‖g‖L∞(Ω) e
−γt ≤ u(t, x)

for (t, x) ∈ ΩT .

13.4. Fractional derivatives for p = 2. This exercise serves as prelude to the
Besov spaces which will appear soon in the lecture.

Define1

Hs(Rn) := {u ∈ L2(Rn) : (2π)−n
∫
Rn

(1 + |ξ|2)s |û(ξ)|2 dξ <∞}

for all s ≥ 0. For u, v ∈ Hs(Rn), define the scalar product2

〈u, v〉s := (2π)−n
∫
Rn

(1 + |ξ|2)sF(u)F(v) dξ.

(a) Prove H0(Rn) = L2(Rn). Prove that Hs is a Hilbert space.

Hint: For the second statement use completeness of L2((1 + |ξ|2)s dξ) ⊂ L2(dξ).

(b) Prove that W k,2(Rn) = Hk(Rn) for k ∈ N.

Hint: Start with k = 1 to test the ground. Prove the equivalence of the norms on
S(Rn).

(c) Prove that for 2s > n, Hs(Rn) imbeds continuously into C0(Rn).

Hint: Use the Fourier inverse formula.
1Recall the Fourier transform and its properties from exercises 8.4 and 8.5.
2As always we use both the hat notation and F to denote the Fourier transform on L2(Rn).
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Solution:

(a) The first statement is exactly Plancherel’s identity which states

‖u‖L2(Rn) = (2π)−n/2 ‖û‖L2(Rn) .

For the second statement, it is not out of this world to check that Hs(Rn) is a linear
subspace and that 〈·, ·〉s defines a scalar product using that F is a linear isomorphism.
To prove that Hs(Rn) is complete, we take a Cauchy sequence ui in Hs(Rn), then
F(ui) is a Cauchy sequence in L2((1 + |ξ|2)s dξ) where (1 + |ξ|2)s dξ is the absolute
continuous measure with respect to the Lebesgue measure on Rn with Radon–Nikodym
derivative (1 + |ξ|2)s. This space is complete, so there is v ∈ L2((1 + |ξ|2)sRn) such
that Fui converges to v in L2((1 + |ξ|2)s dξ). As L2((1 + |ξ|2)s dξ) ⊂ L2(dξ), there is
u ∈ L2(Rn) such that Fu = v. Now it follows directly that ui → u in Hs(Rn). So
H2(Rn) is indeed a Hilbert space.

(b) Fix s = k ∈ N. Then for u ∈ S(Rn), we have

‖u‖2
Wk,2(Rn) =

∑
|α|≤k
‖∂αu‖2

L2(Rn) = (2π)−n
∑
|α|≤k
‖F(∂αu)‖2

L2(Rn)

= (2π)−n
∑
|α|≤k

∥∥∥i|α|ξαû∥∥∥
L2(Rn)

= (2π)−n
∫
Rn

(
∑
|α|≤k
|ξ|2α) |û(ξ)|2 dξ

Now for ξ ∈ Rn, we have

(1 + |ξ|2)k = (1 + ξ2
1 + ξ2

2 + . . .+ ξ2
n)k =

∑
|α|≤k

(
n+ 1

(k − |α| , α)

)
|ξ|2α

where we used the multinomial formula for x = (1, ξ2
1 , . . . , ξ

2
n) ∈ Rn+1. As each

coefficient is at least 1, we get directly∑
|α|≤k
|ξ|2α ≤ (1 + |ξ|2)k ≤ C

∑
|α|≤k
|ξ|2α

for some C := C(k,m) > 0 for all ξ ∈ Rn. Thus, we get

‖u‖2
Wk,2(Rn) ≤ ‖u‖

2
Hs(Rn) ≤ C ‖u‖2

Wk,2(Rn)

We already have that S(Rn) is dense in W k,2(Rn). Let us show that S(Rn) is also
dense in Hs(Rn). Let u ∈ Hs(Rn) and approximate û(1 + |ξ|2)s/2 ∈ L2(Rn) by
ui ∈ S(Rn) in L2, then taking vi := F−1

(
ui

(1+|ξ|2)s/2

)
∈ S(Rn). Then vi converges to u

in Hs(Rn).

So the completions of S(Rn) agrees with respect to both norms, so Hk(Rn) =
W k,2(Rn).
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(c) We want to show that u ∈ Hs(Rn) admits a continuous representative. So fix
u ∈ Hs(Rn) and approximate by Schwartz functions ui ∈ S(Rn) which is possible
by the same argument as above. Then we want to prove that ui is also a Cauchy
sequence with respect to the sup-norm. By Fourier inverse formula, we have

ui(x)− uj(x) = (2π)−n
∫
Rn
ei〈x,ξ〉(ûj(ξ)− ûi(ξ)) dξ

Therefore, we get

|ui(x)− uj(x)| ≤ (2π)−n
∫
Rn
|ûj(ξ)− ûi(ξ)| dξ

= (2π)−n
∫
Rn

(1 + |ξ|2)s/2 |ûj(ξ)− ûi(ξ)|
1

(1 + |ξ|2)s/2
dξ

≤ ‖uj − ui‖s
∫
Rn

1
(1 + |ξ|2)s

dξ ≤ C ‖ui − uj‖s

where we used Hölder with p = q = 2 in the penultimate inequality and for the last
inequality, we use 1

(1+|ξ|2)s ≤
1

(1+|ξ|2s) ∈ L
1(Rn) due to 2s > n. Thus ui is Cauchy in

sup-norm on Rn as C is independent of x. Therefore, there is ũ ∈ C0(Rn) such that
ui → ũ in sup-norm. By the same argument, we get that uj also point-wise converges
almost everywhere to u. So u = ũ almost everywhere (the Fourier inverse formula is
only true almost everywhere for L2 functions.). Furthermore for two u, v ∈ Hs(Rn),
we get supRn(ũ− ṽ) ≤ C ‖u− v‖s. Therefore, we see that Hs(Rn)→ C0(Rn) : u→ ũ
is bounded and injective.

20th May 2016 9/9


