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14.1. Lq − Lp spaces. Let 1 < p, q <∞.

(a) Define

Aq,p := {u : R×Rn → R : u is measurable,
(∫

R

(∫
Rn
|u(t, x)|p dx

) q
p

dt
) 1
q

<∞}/∼.

where ∼ is equivalence almost everywhere. Prove that Aq,p ∼= Lq(R, Lp(Rn)).

Hint: Use strong measurability to get a sequence of step functions ui ∈ Lq(R, Lp(Rn))
and establish the correspondance. Use vk = ∑k

i=0 |ui+1 − ui| with

‖ui+1 − ui‖Lq(R,Lp(Rn)) ≤
1
2i

and the norm on L1([−T, T ], L1(K)) for T > 0 and K ⊂ Rn compact to prove that
the limiting function is measurable.

(b) Prove that C∞0 (R× Rn) ⊂ Lq(R, Lp(Rn)) is dense.

Hint: Reduce it to step functions and then smoothen every single value, and then
smoothen in the t-variable.

(c) Let ρδ be a family of mollifiers on Rn and αδ a family of mollifiers on R. We
introduce Tδ : Lp(Rn) → Lp(Rn) : f → ρδ ∗ f and define for u ∈ Lq(R, Lp(Rn)),
Sδu : R → Lp(Rn) : t → Tδ(u(t)). Prove that Sδu ∈ Lq(R, Lp(Rn)) and that
αδ ∗ (Sδu)→ u in Lq(R, Lp(Rn)).

Hint: Banach–Steinhaus (2.1.5).

(d) Prove that C∞0 (R× Rn) is dense in W 1,q(R, Lp(Rn)) ∩ Lq(R,W 2,p(Rn)).

Solution: Let µ be the Lebesgue measure.

(a) Let s ∈ Lq(R, Lp(Rn)) for 1 < p, q <∞ be a step function. Then

s =
N∑
i=1

1Ii [fi]µ

where Ii ⊂ R are measurable and form a partition a subset of R and [fi]µ are finitely
many equivalence classes of Lp(Rn) functions. We can choose representatives fi for
these finitely many Lp(Rn) functions, and define s̃ : R× Rn → R by

s̃(t, x) =
N∑
i=1

1Ii(t)fi(x),
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which is measurable and any such choice of representatives agrees with s̃ on a set of
measure zero. The norm is also equal as(∫

R

(∫
Rn
|s̃(t, x)|p dx

)p/q
dt
)1/q

=
(

N∑
i=1

µ(Ii) ‖fi‖qLp(Rn)

)1/q

= ‖s‖Lq(R,Lp(Rn)) .

Now by strong measurability, we have that step function ui which converge u in
Lq(R, Lp(Rn)) for i ∈ N. Put u0 = 0 and take a subsequence (still denoted ui) such
that i ∈ N,

‖ui+1 − ui‖Lq(R,Lp(Rn)) ≤ 2−i.

Now define

vn =
n∑
i=0
|ũi+1 − ũi| , v =

∞∑
i=0
|ũi+1 − ũi| ,

and take K ⊂ Rn compact and [−T, T ] ⊂ R for T > 0. Then we have

‖vn‖L1([−T,T ]×K) ≤
n∑
i=0

∫ T

−T

∫
K
|ũi+1(t, x)− ũi(t, x)| dx dt

≤
n∑
i=0

∫ T

−T
µ(K)1/p∗ ‖ũi+1(t, ·)− ũi(t, ·)‖Lp(K) dt

≤ µ(K)1/p∗(2T )1/q∗
n∑
i=0
‖ui+1 − ui‖Lq(R,Lp(Rn))

≤ µ(K)1/p∗(2T )1/q∗(‖u1‖Lq(R,Lp(Rn)) + 1)

where 1
r

+ 1
r∗ = 1 for r = p, q. Hence the L1([−T, T ]×K) norm of v is finite. So, v

is measurable and v is finite almost everywhere on R× Rn by σ-compactness. But
this means that ũi converges pointwise almost everywhere to a measurable function ũ.
This function has also the same norm, i.e.

‖u‖Lq(R,Lp(Rn)) =
(∫

R

(∫
Rn
|ũ(t, x)|p dx

) q
p

dt
) 1
q

Hence u 7→ [ũ]∼ is an isomorphism which preserves the norm.

(b) Let us start with u ∈ Lq(R, Lp(Rn)), we want to prove that this can be ap-
proximated by functions of the subspace C∞0 (R× Rn). We can approximate u by a
step function s. We can approximate now every fi ∈ Lp(Rn) by gi ∈ C∞0 (Rn) with
‖fi − gi‖Lp(Rn) ≤

ε
Nµ(Ii)1/q . Then∥∥∥∥∥s−

N∑
i=1

1Ii [gi]µ
∥∥∥∥∥
Lq(R,Lp(Rn))

≤
(

N∑
i=1

µ(Ii)
εq

Nµ(Ii)

)1/q

= ε.

2/12 2nd June 2016



D-math
Charel Antony

Functional Analysis II
Exercise Sheet 14 - Solution

ETH Zürich
FS 2016

So we may assume that we choose smooth values for our step function.

We may choose sets for i = 1, . . . , N , with

Ki ⊂ Ii ⊂ Ui, µ(Ui \Ki) ≤
ε

N ‖gi‖qLp(Rn)

for Ki compact and Ui open. Next we may by Urysohn’s lemma choose

ψi : R→ [0, 1], ψi ≡ 1 on Ki, supp(ψi) ⊂ Ui, ψi ∈ C0

Furthermore, take T > 0 such that
N∑
i=1

µ(Ii \ [−T, T ]) ‖gi‖qLp(Rn) < ε

and choose

ψT : R→ [0, 1], ψT ≡ 1 on [−T, T ], supp(ψT ) ⊂ [−T − 1, T + 1], ψT ∈ C0.

Then we may define ŝ := ψT
∑N
i=1 ψigi and see that |1Ii − ψTψi| ≤ 1Ui\Ki + 1Ii\[−T,T ].

∫
R
‖s(t, ·)− ŝ(t, ·)‖qLp(Rn) dt ≤

N∑
i=1

∫
Ui\Ki

‖gi‖qLp(Rn) dt+
N∑
i=1

∫
Ii\[−T,T ]

‖gi‖qLp(Rn) dt ≤ 2ε

So we can approximate s by ŝ ∈ Cc(R × Rn) such that ŝ is smooth in the n last
variables.

Now the standard mollifier αδ argument will work, i.e. we approximate ŝ by

sδ(t, x) :=
∫
R
αδ(t− s)ŝ(s, x) ds

and the usual argument shows that sδ converges uniformly to ŝ as δ → 0, so in
particular, it will converge to ŝ in Lq(R, Lp(Rn)) norm and sδ ∈ C∞0 (R× Rn).

(c) First off, we observe that

‖Sδu‖qLq(R,Lp(Rn)) =
∫
R
‖Tδu(t)‖qLp(Rn) dt ≤

∫
R
‖u(t)‖qLp(Rn) dt = ‖u‖Lq(R,Lp(Rn))

where we used Young’s inequality to prove that ‖Tδ‖L(Lp(Rn)) ≤ 1. We already know
that the convergence works on C∞0 (R× Rn) which sits dense in Lq(R, Lp(Rn)).

Furthermore, we have for any Banach space X that on Lq(R, X), we have

‖αδ ∗ u‖Lq(R,X) ≤ ‖αδ‖L1(R) ‖u‖Lq(R,X) ≤ ‖u‖Lq(R,X)
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which is established in the same way as Young’s inequality with X = R and using
‖
∫
R u(t) dt‖X ≤

∫
R ‖u(t)‖ dt by (5.1.9).

In our case, X = Lp(Rn) and so we get

‖αδ ∗ (Sδu)‖Lq(R,Lp(Rn)) ≤ ‖Sδu‖Lq(R,Lp(Rn)) ≤ ‖u‖Lq(R,Lp(Rn)) .

So by Banach–Steinhaus, we have immediately that the wanted convergence holds
true for every element of Lq(R, Lp(Rn)).

(d) This is now the same argument as to prove that C∞0 (Rn) lies dense W 2,p(Rn) or
C∞0 (R) lies dense in W 1,q(Rn) i.e first truncate and then use mollifiers as in (c) which
converge together with their derivatives in Lq(R, Lp(Rn)). So we have indeed that
C∞0 (R× Rn) is dense in W 1,q(R, Lp(Rn)) ∩ Lq(R,W 2,p(Rn)).

14.2. Hardy’s inequality 1 Fix 1 < p <∞ and a > 0.

(a) Let f : (0,∞) → R be a Lebesgue measurable and suppose that the function
(0,∞)→ R : x→ xp−1−a |f(x)|p is integrable. Show that the restriction of f to each
interval (0, x] is integrable and prove Hardy’s inequality

(∫ ∞
0

x−1−a
∣∣∣∣∫ x

0
f(t)dt

∣∣∣∣p dx
) 1
p

≤ p

a

(∫ ∞
0

xp−1−a |f(x)|p dx
) 1
p

.

Show that equality in Hardy’s inequality holds if and only if f = 0 almost everywhere.

Hint: Assume first that f is nonnegative with compact support and define

F (x) := 1
x

∫ x

0
f(t) dt for x > 0.

Use integration by parts to obtain∫ ∞
0

xp−1−aF (x)p dx = p

a

∫ ∞
0

xp−1−aF (x)p−1f(x) dx.

Use Hölder inequality.

(b) Show that the constant p
a
in Hardy’s inequality is sharp.

Hint: Choose λ < 1− a
p
and take f(x) = x−λ for x ≤ 1 and f(x) := 0 for x > 1.

(c) Let f : (0,∞) → R be Lebesgue measurable and |f |p be Lebesgue integrable.
Prove that∫ ∞

0

∣∣∣∣1x
∫ x

0
f(t) dt

∣∣∣∣p dx ≤
(

p

p− 1

)p ∫ ∞
0
|f(x)|p dx.

1This is part of exercise 4.52 p:171 in Dietmar’s Measure and Integration book.
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(d) Let f : (0,∞) → R be a Lebesgue measurable and suppose that the function
(0,∞) → R : x → xp−1+a |f(x)|p is integrable. Show that the restriction to each
interval [x,∞) is integrable and prove the inequality

(∫ ∞
0

xa−1
∣∣∣∣∫ ∞
x

f(t)dt
∣∣∣∣p dx

) 1
p

≤ p

a

(∫ ∞
0

xp−1+a |f(x)|p dx
) 1
p

.

Hint: Apply the inequality in (a) to the function g(x) := x−2f(x−1).

Solution:

(a) Take 1
p

+ 1
q

= 1 i.e. q = p
p−1 . We start by proving that the restriction of f to

each interval (0, x] is integrable. Indeed,∫ x

0
|f(t)| dt =

∫ x

0
t

1+a−p
p t

p−1−a
p |f(t)| dt

≤
(∫ x

0
tp−1−a |f(t)|p dt

)1/p (∫ x

0
t

a
p−1−1

)1/q
≤ Cxa/p <∞.

Now we follow the hint and assume f positive (≥) , continuous and compactly
supported, and calculate∫ ∞

0
xp−1−aF (x)p dx =

∫ ∞
0

x−1−a(
∫ x

0
f(t) dt)p dx

= −
[(∫ x

0
f(t) dt

)p
x−a

1
a

]∞
0

+ p

a

∫ ∞
0

xp−1−aF (x)p−1f(x) dx.

We want the boundary terms to be zero. For x = 0, we have that∣∣∣∣(∫ x

0
f(t) dt

)p
x−a

∣∣∣∣ ≤ ∫ x

0
tp−1−a |f(t)|p dt→ 0

as x → 0 due to the integrability assumption. As f is assumed to have compact
support, we have that supp f ⊂ (0, L] and so f is integrable, by the previous argument.
This gives us for x =∞, that for x > L,∣∣∣∣(∫ x

0
f(t) dt

)p
x−a

∣∣∣∣ ≤ ‖f‖pL1((0,∞)) x
−a → 0

as x→∞. Hence the equality in the hint is proven.

We now can readily derive Hardy’s inequality from this inequality, by recognising as
in the calculation above that∫ ∞

0
xp−1−aF (x)p dx =

∫ ∞
0

x−1−a
(∫ x

0
f(t) dt

)p
dx
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which is the right hand side of Hardy’s inequality to the power p. By the equality, we
estimate∫ ∞

0
xp−1−aF (x)p dx = p

a

∫ ∞
0

xp−1−aF (x)p−1f(x) dx

= p

a

∫ ∞
0

x
p−1−a
q F (x)p−1x

p−1−a
p f(x) dx

≤ p

a

(∫ ∞
0

xp−1−af(x)p dx
) 1
p
(∫ ∞

0
xp−1−aF (x)p dx

) 1
q

where we used Hölder inequality, f > 0 and (p− 1)q = p.

The right hand side of Hardy’s inequality is finite due to f having compact support,
so we may divide in the last inequality, to get(∫ ∞

0
xp−1−aF (x)p dx

) 1
p

≤ p

a

(∫ ∞
0

xp−1−af(x)p dx
) 1
p

.

This establishes the result for f positive, continuous and compactly supported.

Assume that f is only positive. Then approximate f by positive compactly supported
functions fk ∈ C0((0,∞)) in Lp((0,∞), tp−1−a dt) for k ∈ N, i.e. such that

lim
k→∞

∫ ∞
0

tp−1−a |f(t)− fk(t)|p dt = 0.

Now we have that by definingG(x) := x−
1
p
−a
p
∫ x

0 f(t) dt andGk(x) := x−
1
p
−a
p
∫ x

0 fk(t) dt.

|G(x)−Gk(x)| ≤ x−
1
p
−a
p

∫ x

0
|f(t)− fk(t)| dt

≤ x−
1
p
−a
p

(∫ x

0
|f(t)− fk(t)|p tp−1−a dt

)1/p (∫ x

0
t

a
p−1−1

)1/q

≤ x−
1
p
−a
p

(∫ x

0
|f(t)− fk(t)|p tp−1−a dt

)1/p p− 1
a

x
a
p

≤ x−
1
p ε
p− 1
a

for k sufficiently big. So we have pointwise convergence for G. By Fatou’s Lemma
this means that∫ ∞

0
G(x) dx =

∫ ∞
0

lim
k→∞

Gk(x) dx ≤ lim
k→∞

∫ ∞
0

Gk(x) dx

≤ p

a
lim
k→∞

∫ ∞
0

xp−a−1fk(x)p dx = p

a

(∫ ∞
0

xp−1−af(x)p dx
) 1
p

.

The result is easily extended to general functions f by using the established inequality
for the positive function |f |.
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For the equality case, we already need by the last step that |
∫ x

0 f(t) dt| =
∫ x

0 |f(t)| dt
which means f is positive or negative. Next, for positive functions, we have that
the Hölder step is an equality (The equality of the hint has to hold in the equality
cases) only if there is a constant c > 0 such that tp−1−aF (x)p = ctp−1−af(x)p almost
everywhere, i.e.

1
x

∫ x

0
f(t) dt = c

1
pf(x).

Hence, f is continuous and differentiable almost everywhere and

c
1
pf ′(x) = − 1

x2

∫ x

0
f(t) dt+ 1

x
f(x) = (1− c

1
p ) 1
x
f(x).

Hence, f(x) = f(1)x(1−c
1
p )/c

1
p which has only the prescribed properties for f(1) = 0.

The same is true for negative functions.

(b) We use for λ < 1− a
p
that

f(x) =
{
x−λ, for 0 < x < 1

0, for x ≥ 1

Then, we have that∫ ∞
0

tp−1−a |f(t)|p dt =
∫ 1

0
tp−1−a−pλ dt = 1

p− a− pλ
<∞

On the other hand, we have∫ ∞
0

x−1−a
(∫ x

0
f(t) dt

)p
dx =

( 1
1− λ

)p (∫ 1

0
xp−1−a−pλ dx+

∫ ∞
1

x−1−a dx
)

=
( 1

1− λ

)p ( 1
p− a− pλ

+ 1
a

)

Now by comparing, we see that∫∞
0 x−1−a (

∫ x
0 f(t) dt)p dx∫∞

0 tp−1−a |f(t)|p dt =
( 1

1− λ

)p (
1 + (p− a− pλ)1

a

)

This last expression is an increasing function which converges as λ →
(
1− a

p

)−
to(

a
p

)p
. Hence this is the best constant in Hardy’s inequality.

(c) Take a = p− 1 in (a).
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(d) We may start with f ≥ 0 as before. We set g(t) := t−2f(t−1) and compute
∫ ∞

0
g(t)ptp−a−1 dt =

∫ ∞
0

f(t−1)pt−p−a−1 dt =
∫ ∞

0
f(x)xp+a+1x−2 dx <∞

Hence, we can use (a), to get
∫ ∞

0
xa−1

∣∣∣∣∫ ∞
x

f(t) dt
∣∣∣∣p dx =

∫ ∞
0

x−(a−1)−2
(∫ x

0
g(t) dt

)p
dx

≤
(
p

a

)p ∫ ∞
0

tp−1−ag(t)p dt =
(
p

a

)p ∫ ∞
0

f(x)xp+a−1 dx

where in the first equality we used the simultaneous change of variables t→ t−1 and
x→ x−1.

Again as before, the general case can be gotten from the same inequality for its
absolute value.

14.3. Uniform maximal regularity of S and its dual.

Prove that for 1 < q, q∗ <∞ and X a reflexive complex Banach space with 1
q

+ 1
q∗ = 1,

the following are equivalent.

• S is uniformly maximal q-regular.

• S∗ is uniformly maximal q∗-regular.

where S∗ is the dual strongly continuous semigroup (7.3.9).

Hint: Prove by passing to the limit that for g : [0, T ]→ X∗, f : [0, T ]→ X C1, we
have

∫ T

0

〈
g(t), A

∫ t

0
S(t− s)f(s) ds

〉
dt

=
∫ T

0

〈
A∗
∫ s

0
S∗(s− t)g(T − t) dt, f(T − s)

〉
ds.

where 〈·, ·〉 is the usual pairing between X and its dual.

Solution: Let h > 0, f : [0, T ]→ X be a continuously differentiable function and
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g : [0, T ]→ X∗ be a continuously differentiable function. Then we calculate∫ T

0

〈
g(t), S(h)

∫ t

0
S(t− s)f(s) ds−

∫ t

0
S(t− s)f(s) ds

〉
dt

=
∫ T

0

〈
g(t),

∫ t

0
(S(t− s+ h)− S(t− s))f(s) ds

〉
dt

=
∫ T

0

∫ t

0
〈g(t), (S(t− s+ h)− S(t− s))f(s)〉 ds dt

=
∫ T

0

∫ T

s
〈(S∗(t− s+ h)− S∗(t− s))g(t), f(s)〉 dt ds

=
∫ T

0

∫ s

0
〈(S∗(s− t+ h)− S∗(s− t))g(T − t), f(T − s)〉 dt ds

=
∫ T

0

〈
S∗(h)

∫ s

0
S∗(s− t)g(T − t) dt−

∫ s

0
S∗(s− t)g(T − t) dt, f(T − s)

〉
ds

where the first two and the last equality follow by (5.1.9), in the third equality we use
Fubini, in the fourth equality we use the change of variables s∗ = T − s, t∗ = T − t.
Now dividing this equality by h and passing to the limit as h→ 0, we get the wanted
equality∫ T

0

〈
g(t), A

∫ t

0
S(t− s)f(s) ds

〉
dt

=
∫ T

0

〈
A∗
∫ s

0
S∗(s− t)g(T − t) dt, f(T − s)

〉
ds.

Now assume that first that S∗ is is uniformly maximal q∗-regular. Then we can
estimate∣∣∣∣∣

∫ T

0

〈
g(t), A

∫ t

0
S(t− s)f(s) ds

〉
dt
∣∣∣∣∣

=
∣∣∣∣∣
∫ T

0

〈
A∗
∫ s

0
S∗(s− t)g(T − t) dt, f(T − s)

〉
ds
∣∣∣∣∣

≤
∫ T

0

∣∣∣∣〈A∗ ∫ s

0
S∗(s− t)g(T − t) dt, f(T − s)

〉∣∣∣∣ ds

≤
∫ T

0

∥∥∥∥A∗ ∫ s

0
S∗(s− t)g(T − t) dt

∥∥∥∥
X∗
‖f(T − s)‖X ds

≤
(∫ T

0

∥∥∥∥A∗ ∫ s

0
S∗(s− t)g(T − t) dt

∥∥∥∥q∗

X∗
ds
)1/(q∗) (∫ T

0
‖f(T − s)‖qX ds

)1/q

≤ ‖g‖Lq∗ ([0,T ],X∗) ‖f‖Lq([0,T ],X)

where the third line follows from (5.1.9), the penultimate inequality came from Hölder
inequality and the last one from S∗ is is uniformly maximal q∗-regular.
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As C1([0, T ], X∗) ⊂ Lq
∗([0, T ], X∗) is dense, we have for all g ∈ Lq∗([0, T ], X∗) that

∣∣∣∣∣
∫ T

0

〈
g(t), A

∫ t

0
S(t− s)f(s) ds

〉
dt
∣∣∣∣∣ ≤ ‖g‖Lq∗ ([0,T ],X∗) ‖f‖Lq([0,T ],X) . (1)

It can be shown (we leave it as a longer exercise) that (Lq([0, T ], X))∗ = Lq
∗([0, T ], X∗)

and the identification works via the natural pairing

Lq
∗([0, T ], X∗)→ (Lq([0, T ], X))∗ : g 7→ (f 7→

∫ T

0
〈g(t), f(t)〉 dt).

In the same way, (Lq∗([0, T ], X∗))∗ = Lq([0, T ], X∗∗) = Lq([0, T ], X). Hence, by (1)
and the definition of the dual norm, we have

∥∥∥∥A ∫ t

0
S(t− s)f(s) ds

∥∥∥∥
Lq([0,T ],X)

≤ ‖f‖Lq([0,T ],X) .

This exactly means that S is uniformly maximal q-regular as f was arbitrary. The
converse comes from S∗∗ = S, as we have a reflexive space X.

14.4. Sobolev–Slobodeckij space Let n ∈ N and fix real numbers p ≥ 1 and
0 < s < 1. The completion of C∞0 (Rn,C) with respect to the norm

‖f‖ws,p :=
(∫

Rn

∫
Rn

|f(x)− f(y)|p

|x− y|n+sp dy dx
)1/p

is called the homogeneous Sobolev–Slobodeckij space and is denoted by ws,p(Rn,C).
On the other hand, the completion of C∞0 (Rn,C) with respect to the norm

‖f‖bs,pp,1,int :=
(∫ ∞

0

1
rsp+1

1
µ(Br)

∫
Br

∫
Rn
|f(x+ h)− f(x)|p dx dh dr

)1/p

is called the homogeneous Besov space and denoted by bs,pp (Rn,C).

Prove that ws,p(Rn,C) = bs,pp (Rn,C).

Hint: Prove that ‖f‖bs,pp,1,int =
(

1
(n+sp)µ(B1)

)1/p
‖f‖ws,p by using Fubini and spherical

coordinates.
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Solution: For x ∈ Rn and r > 0 define Sr(x) := {y ∈ Rn : |y − x| = r}. Then

‖f‖pbs,pp,1,int =
∫ ∞

0

1
rsp+1

1
µ(Br)

∫
Br

∫
Rn
|f(x+ h)− f(x)|p dx dh dr

= 1
µ(B1)

∫
Rn

∫ ∞
0

1
rn+sp+1

∫
Br(x)

|f(x)− f(y)|p dy dr dx

= 1
µ(B1)

∫
Rn

∫ ∞
0

∫ r

0

1
rn+sp+1

∫
Sρ(x)
|f(x)− f(y)|p dσ(y)ρn−1dρdrdx

= 1
µ(B1)

∫
Rn

∫ ∞
0

∫ ∞
ρ

1
rn+sp+1

∫
Sρ(x)
|f(x)− f(y)|p dσ(y)ρn−1 drdρdx

= 1
(n+ sp)µ(B1)

∫
Rn

∫ ∞
0

1
ρn+sp

∫
Sρ(x)
|f(x)− f(y)|p dσ(y)ρn−1 dρ dx

= 1
(n+ sp)µ(B1)

∫
Rn

∫
Rn

|f(x)− f(y)|p

|x− y|n+sp dy dx

= 1
(n+ sp)µ(B1)

‖f‖pws,p

14.5. Besov for 1 ≤ s < 2. Fix p, q ≥ 1. Prove that for f ∈ C∞0 (Rn) non constant
and 1 ≤ s < 2, that

‖f‖bs,pq,1 =
(∫ ∞

0

(
ω1(r, f)p

rs

)q
dr

r

)1/q

=∞.

where ω1(r, f)p := sup|h|≤r (
∫
Rn |f(x+ h)− f(x)|p dx)1/p.

So one has to replace ω1(r, f)p with ω2(r, p)p in the case s ≥ 1.

Hint: Use (12.13) in Lemma 12.9.

Solution: We have by (12.13) of Lemma 12.9, that

0 6= c :=
‖∇f‖Lp(Rn)

n
≤ lim inf

r→0

ω1(r, f)p
r

=: l.

By definition, there is δ > 0 such that
∣∣∣infr≤δ ω1(r,f)p

r
− l
∣∣∣ ≤ c

2 . Meaning that for
0 < r < δ, we have

ω1(r, f)p
r

≥ c

2
Or in other words for 0 < r < δ,

(ω1(r, f)p
r

)q 1
rq(s−1)+1 ≥

(
c

2

)q 1
rq(s−1)+1
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Hence the positive integral
∫ ∞

0

(
ω1(r, f)p

rs

)q
dr

r

diverges around 0 as q(s− 1) + 1 ≥ 1.
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