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1.1. Young’s Inequality. Let 1 ≤ r, p, q <∞ such that

1 + 1
r

= 1
p

+ 1
q
.

Take f ∈ Lp(Rn) and g ∈ Lq(Rn). Define the convolution f ∗ g by

(f ∗ g)(x) :=
∫
Rn
f(y)g(x− y)dy.

Prove that f ∗ g ∈ Lr(Rn) and that

‖f ∗ g‖Lr ≤ ‖f‖Lp ‖g‖Lq .

Deduce that (L1(Rn), ∗) is a Banach algebra without unit.

Hint: Use the Hölder Inequality for three functions with 1
r

+ r−p
rp

+ r−q
rq

= 1 for a
point-wise estimate and integrate it.

Solution: We estimate

|(f ∗ g)(x)| ≤
∫
Rn
|f(y)||g(x− y)|dy

=
∫
Rn

(|f(y)|p|g(x− y)|q)1/r|f(y)|1−p/r|g(x− y)|1−q/rdy

≤
∥∥∥(|f(y)|p|g(x− y)|q)1/r

∥∥∥
Lr

∥∥∥|f(y)|1−p/r
∥∥∥
L

r−p
rp

∥∥∥|g(x− y)|1−q/r
∥∥∥
L

r−q
rq

≤ (
∫
Rn

(|f(y)|p|g(x− y)|q)dy)1/r ‖f‖1−p/r
Lp ‖g‖1−q/r

Lq

where the penultimate inequality follows by Hölder for three functions.

Thus integrating this estimate we get

‖f ∗ g‖rLr ≤
∫
Rn

∫
Rn
|g(y)|p|f(x− y)|qdy dx ‖f‖r−pLp ‖g‖r−qLq

≤ ‖g‖qLq ‖f‖pLp ‖f‖r−pLp ‖g‖r−qLq

≤ (‖f‖Lp ‖g‖Lq)r

where the penultimate inequality follows from Fubini. For L1, look at the case
p = q = r = 1.

1.2. Harmonic functions on a two dimensional domain. Let Ω ⊂ C be an
open, simply connected subset of C.
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(a) Let f : Ω→ C be a holomorphic function. Prove that u := Re f and v := Im f
are harmonic, i.e.

∆v = ∆u := ∂2

∂x2u+ ∂2

∂x2v = 0.

(b) Let u : Ω → R be a C2 harmonic function. Prove that there is a function
v : Ω→ R such that f = u+ iv : Ω→ C is holomorphic.

(c) Prove that if u : Ω→ R is a C2 harmonic function, then u is analytic.

(d) (Mean value property) Prove that if u : Ω→ R is C2 harmonic, then

u(z0) =
∫ 1

0
u(z0 + re2πit)dt

whenever B̄r(z0) ⊂ Ω.

(e) (Maximum principle) Prove that if Ω′ ⊂ Ω is bounded, then for u : Ω → R
C2 harmonic, we have

max
Ω′

u = max
∂Ω′

u

Hint: Use theorems about holomorphic functions e.g. Cauchy’s theorem. For (b),
consider G := ∂xu− i∂yu and define v(z) := Im

∫
γ G, where z0 ∈ Ω and γ : [0, 1]→ Ω

is a smooth path such that γ(0) = z0 and γ(1) = z.

Solution: (a) As f = u+ iv is holomorphic, the Cauchy-Riemann equations hold.

∆u = ∂x∂xu+ ∂y∂yu = ∂x∂yv − ∂y∂xv = 0.

Similarly for v.

(b) Define G := ∂xu+−i∂yu. Then we have

∂y ReG = ∂y∂xu = ∂x∂yu = −∂x ImG

∂x ReG = ∂x∂xu = −∂y∂yu = ∂y ImG

Hence, G is holomorphic. By Cauchy’s theorem and Ω simply connected, we have∫
γ
G = 0 (1)

for every loop γ : S1 → Ω. Now fix z0 ∈ Ω and define v : Ω → R by choosing for
every point z ∈ Ω a path γ : [0, 1]→ Ω where γ(0) = z0 and γ(1) = z, and

v(z) = Im
∫
γ
G.

2/5 26th February 2016



D-math
Charel Antony

Functional Analysis II
Exercise Sheet 1 - Solution

ETH Zürich
FS 2016

This function is well-defined by (1) and we calculate for t ∈ R \ {0}

v(z + t)− v(z) = Im
∫ t

0
G(z + τ) dτ =

∫ t

0
(−∂yu(z + τ)) dτ

v(z + ti)− v(z) = Im
∫ t

0
G(z + τi) · i dτ =

∫ t

0
∂xu(z + τi) dτ

Hence dividing by t and taking the limit for t→ 0, we get

∂xv = −∂yu
∂yv = ∂xu.

Hence v : Ω→ R is C2 harmonic and f = u+ iv is holomorphic. u and v are called
harmonic conjugates.

(c) By (b), we can find a holomorphic function f : Ω→ C such that u = Re f . Hence,
u is analytic, as f is analytic.

(d) Let f : Ω → C be holomorphic, such that u = Re f . As f has the mean value
property by Cauchy’s theorem, so does u. Indeed,

f(z0) = 1
2πi

∫
γ(zo,r)

f(z)
(z − z0) = 1

2πi

∫ 1

0

f(z0 + re2πit)
re2πi 2πire2πit dt =

∫ 1

0
f(z0+re2πit) dt

Therefore,

u(z0) = Re f(z0) = Re
∫ 1

0
f(z0 + re2πit) dt =

∫ 1

0
u(z0 + re2πit)dt

(e) u is continuous and Ω′ is compact, so u attains a maximum on Ω′. Assume the
maximum of u on Ω′ is attained at any point z0 of the interior of Ω′, then there is
a small ball B̄r(z) ⊂ Ω′ and on this ball u would violate the mean value property.
Therefore the maximum must be attained at a boundary point.

1.3. Symmetries of PDE

(a) Prove that for O ∈ O(n) and u : Ω ⊂ Rn → R C2 harmonic, then

vO(x) := u(Ox)

is also harmonic where Ω is open and x ∈ ΩO := {x ∈ Rn : Ox ∈ Ω}.
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(b) Prove that for u : Ω ⊂ R⊕ Rn → R a C2 solution of the heat equation i.e.

∂tu−∆xu = 0

where (t, x) ∈ R⊕ Rn and Ω open,

vλ,O(t, x) = u(λ2t, λOx)

is also a solution of the heat equation for λ > 0, O ∈ O(n) and

(t, x) ∈ Ωλ,O := {(t, x) ∈ R⊕ Rn : (λ2t, λOx) ∈ Ω}.

(c) 1 Prove that for u : Ω ⊂ R⊕ Rn → R a C2 solution of the heat equation, then

vε(t, x) := 1(√
1 + 4εt

)n exp
(
−ε ‖x‖2

1 + 4εt

)
u
(

t

1 + 4εt ,
x

1 + 4εt

)

is also a solution of the heat equation for ε > 0 and

(t, x) ∈ Ωε := {(t, x) ∈ R⊕ Rn : t > −(4ε)−1, ( t

1 + 4εt ,
x

1 + 4εt) ∈ Ω}.

Use this symmetry starting from the constant solution to get a non-trivial solution vε
of the heat equation. Analyse the behaviour of vε as t→ −(4ε)−1.

Solution:

(a) We can easily compute that the Hessian transforms as follows

(d2vO)(x) = O>(d2u)(Ox)O

and therefore

∆vO(x) = tr (d2vO(x)) = tr (O>d2u(Ox)O) = tr (OO>(d2u)(Ox)) = (∆u)(Ox) = 0

(b) We compute

∂tvλ,O(t, x) = λ2(∂tu)(λ2t, λOx)

and

∆xvλ,O(t, x) = λ2(∆xu)(λ2t, λOx)
1Thank you Yannick Krifka for pointing out a mistake in a previous version of this exercise.
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where we used the calculation from (a). Thus
∂tvλ,O(t, x)−∆xvλ,O(t, x) = 0.

(c) Denote by s := 1√
1+4εt and calculate

∂tvε(t, x)
= −2nεsn+2 exp(−ε ‖x‖2 s2)f(ts2, xs2) + sn+44ε2 ‖x‖2 exp(−ε ‖x‖2 s2)f(ts2, xs2)
− sn+44ε exp(−ε ‖x‖2 s2)

〈
x, ∂xf(ts2, xs2)

〉
+ sn+4 exp(−ε ‖x‖2 s2)∂tf(ts2, xs2)

∂xi
vε = sn+2(−2εxi) exp(−ε ‖x‖2 s2)f(ts2, xs2) + sn+2 exp(−ε ‖x‖2 s2)∂xi

f(ts2, xs2)
∂xixi

vε(t, x)
= −2εsn+2 exp(−ε ‖x‖2 s2)f(ts2, xs2) + sn+44ε2x2

i exp(−ε ‖x‖2 s2)f(ts2, xs2)
− sn+44εxi exp(−ε ‖x‖2 s2)∂xi

f(ts2, xs2) + sn+4 exp(−ε ‖x‖2 s2)∂xixi
f(ts2, xs2)

for i = 1, . . . , n and where ∂xf denotes the gradient of f with respect to x. Now sum
over i to see that vε is solution of the heat equation. Starting from u(x, t) = c ∈ R,
we get

vε(t, x) = c√
1 + 4εt

exp
(
−ε ‖x‖2

1 + 4εt

)
.

This is a constant times the fundamental solution, so as t→ −(4ε)−1, we see that vε
goes to zero for x 6= 0, but that for x = 0 there might remain a ’peak’.

1.4. Let u : Ω ⊂ Rn → R be a harmonic function and f : R → R a convex
function2, then f ◦ u is subharmonic, i.e.

∆(f ◦ u) ≥ 0
Solution: We estimate

∆(f ◦ u) =
n∑
i=1

∂xi
∂xi

(f ◦ u)

=
n∑
i=1

∂xi
(f ′ ◦ u ∂xi

u)

=
n∑
i=1

(
f ′′ ◦ u (∂xi

u)2 + f ′ ◦ u ∂xi
∂xi
u
)

= f ′′ ◦ u |∇u|2

≥ 0

2This means f ′′(t) ≥ 0 for t ∈ R.
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