1.1. Young's Inequality. Let $1 \le r, p, q < \infty$ such that

$$1+\frac{1}{r}=\frac{1}{p}+\frac{1}{q}.$$

Take $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$. Define the convolution f * g by

$$(f*g)(x) := \int_{\mathbb{R}^n} f(y)g(x-y)\mathrm{d}y.$$

Prove that $f * g \in L^r(\mathbb{R}^n)$ and that

$$\|f * g\|_{L^r} \le \|f\|_{L^p} \, \|g\|_{L^q} \, .$$

Deduce that $(L^1(\mathbb{R}^n), *)$ is a Banach algebra without unit.

Hint: Use the Hölder Inequality for three functions with $\frac{1}{r} + \frac{r-p}{rp} + \frac{r-q}{rq} = 1$ for a point-wise estimate and integrate it.

Solution: We estimate

$$\begin{split} |(f*g)(x)| &\leq \int_{\mathbb{R}^n} |f(y)| |g(x-y)| \mathrm{d}y \\ &= \int_{\mathbb{R}^n} (|f(y)|^p |g(x-y)|^q)^{1/r} |f(y)|^{1-p/r} |g(x-y)|^{1-q/r} \mathrm{d}y \\ &\leq \left\| (|f(y)|^p |g(x-y)|^q)^{1/r} \right\|_{L^r} \left\| |f(y)|^{1-p/r} \right\|_{L^{\frac{r-p}{rp}}} \left\| |g(x-y)|^{1-q/r} \right\|_{L^{\frac{r-q}{rq}}} \\ &\leq (\int_{\mathbb{R}^n} (|f(y)|^p |g(x-y)|^q) \mathrm{d}y)^{1/r} \| f \|_{L^p}^{1-p/r} \| g \|_{L^q}^{1-q/r} \end{split}$$

where the penultimate inequality follows by Hölder for three functions.

Thus integrating this estimate we get

$$\begin{split} \|f * g\|_{L^{r}}^{r} &\leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |g(y)|^{p} |f(x-y)|^{q} \mathrm{d}y \, \mathrm{d}x \, \|f\|_{L^{p}}^{r-p} \, \|g\|_{L^{q}}^{r-q} \\ &\leq \|g\|_{L^{q}}^{q} \, \|f\|_{L^{p}}^{p} \, \|f\|_{L^{p}}^{r-p} \, \|g\|_{L^{q}}^{r-q} \\ &\leq (\|f\|_{L^{p}} \, \|g\|_{L^{q}})^{r} \end{split}$$

where the penultimate inequality follows from Fubini. For L^1 , look at the case p = q = r = 1.

1.2. Harmonic functions on a two dimensional domain. Let $\Omega \subset \mathbb{C}$ be an open, simply connected subset of \mathbb{C} .

26th February 2016

 $1/_{5}$

(a) Let $f: \Omega \to \mathbb{C}$ be a holomorphic function. Prove that $u := \operatorname{Re} f$ and $v := \operatorname{Im} f$ are harmonic, i.e.

$$\Delta v = \Delta u := \frac{\partial^2}{\partial x^2} u + \frac{\partial^2}{\partial x^2} v = 0.$$

(b) Let $u : \Omega \to \mathbb{R}$ be a C^2 harmonic function. Prove that there is a function $v : \Omega \to \mathbb{R}$ such that $f = u + iv : \Omega \to \mathbb{C}$ is holomorphic.

- (c) Prove that if $u: \Omega \to \mathbb{R}$ is a C^2 harmonic function, then u is analytic.
- (d) (Mean value property) Prove that if $u: \Omega \to \mathbb{R}$ is C^2 harmonic, then

$$u(z_0) = \int_0^1 u(z_0 + re^{2\pi it}) \mathrm{d}t$$

whenever $\bar{B}_r(z_0) \subset \Omega$.

(e) (Maximum principle) Prove that if $\Omega' \subset \Omega$ is bounded, then for $u : \Omega \to \mathbb{R}$ C^2 harmonic, we have

$$\max_{\Omega'} u = \max_{\partial \Omega'} u$$

Hint: Use theorems about holomorphic functions e.g. Cauchy's theorem. For (b), consider $G := \partial_x u - i \partial_y u$ and define $v(z) := \text{Im } \int_{\gamma} G$, where $z_0 \in \Omega$ and $\gamma : [0, 1] \to \Omega$ is a smooth path such that $\gamma(0) = z_0$ and $\gamma(1) = z$.

Solution: (a) As f = u + iv is holomorphic, the Cauchy-Riemann equations hold.

$$\Delta u = \partial_x \partial_x u + \partial_y \partial_y u = \partial_x \partial_y v - \partial_y \partial_x v = 0.$$

Similarly for v.

(b) Define $G := \partial_x u + -i \partial_y u$. Then we have

$$\partial_y \operatorname{Re} G = \partial_y \partial_x u = \partial_x \partial_y u = -\partial_x \operatorname{Im} G$$
$$\partial_x \operatorname{Re} G = \partial_x \partial_x u = -\partial_y \partial_y u = \partial_y \operatorname{Im} G$$

Hence, G is holomorphic. By Cauchy's theorem and Ω simply connected, we have

$$\int_{\gamma} G = 0 \tag{1}$$

for every loop $\gamma: S^1 \to \Omega$. Now fix $z_0 \in \Omega$ and define $v: \Omega \to \mathbb{R}$ by choosing for every point $z \in \Omega$ a path $\gamma: [0, 1] \to \Omega$ where $\gamma(0) = z_0$ and $\gamma(1) = z$, and

$$v(z) = \operatorname{Im} \int_{\gamma} G.$$

26th February 2016

2/5

This function is well-defined by (1) and we calculate for $t \in \mathbb{R} \setminus \{0\}$

$$v(z+t) - v(z) = \operatorname{Im} \int_0^t G(z+\tau) \, \mathrm{d}\tau = \int_0^t (-\partial_y u(z+\tau)) \, \mathrm{d}\tau$$
$$v(z+ti) - v(z) = \operatorname{Im} \int_0^t G(z+\tau i) \cdot i \, \mathrm{d}\tau = \int_0^t \partial_x u(z+\tau i) \, \mathrm{d}\tau$$

Hence dividing by t and taking the limit for $t \to 0$, we get

$$\partial_x v = -\partial_y u$$
$$\partial_y v = \partial_x u.$$

Hence $v: \Omega \to \mathbb{R}$ is C^2 harmonic and f = u + iv is holomorphic. u and v are called harmonic conjugates.

(c) By (b), we can find a holomorphic function $f : \Omega \to \mathbb{C}$ such that $u = \operatorname{Re} f$. Hence, u is analytic, as f is analytic.

(d) Let $f: \Omega \to \mathbb{C}$ be holomorphic, such that $u = \operatorname{Re} f$. As f has the mean value property by Cauchy's theorem, so does u. Indeed,

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma_{(z_0,r)}} \frac{f(z)}{(z-z_0)} = \frac{1}{2\pi i} \int_0^1 \frac{f(z_0 + re^{2\pi it})}{re^{2\pi i}} 2\pi i re^{2\pi it} \, \mathrm{d}t = \int_0^1 f(z_0 + re^{2\pi it}) \, \mathrm{d}t$$

Therefore,

$$u(z_0) = \operatorname{Re} f(z_0) = \operatorname{Re} \int_0^1 f(z_0 + re^{2\pi i t}) \, \mathrm{d}t = \int_0^1 u(z_0 + re^{2\pi i t}) \, \mathrm{d}t$$

(e) u is continuous and $\overline{\Omega'}$ is compact, so u attains a maximum on $\overline{\Omega'}$. Assume the maximum of u on Ω' is attained at any point z_0 of the interior of Ω' , then there is a small ball $\overline{B}_r(z) \subset \Omega'$ and on this ball u would violate the mean value property. Therefore the maximum must be attained at a boundary point.

1.3. Symmetries of PDE

(a) Prove that for $O \in O(n)$ and $u : \Omega \subset \mathbb{R}^n \to \mathbb{R}$ C^2 harmonic, then

$$v_O(x) := u(Ox)$$

is also harmonic where Ω is open and $x \in \Omega_O := \{x \in \mathbb{R}^n : Ox \in \Omega\}.$

26th February 2016

(b) Prove that for $u: \Omega \subset \mathbb{R} \oplus \mathbb{R}^n \to \mathbb{R}$ a C^2 solution of the heat equation i.e.

$$\partial_t u - \Delta_x u = 0$$

where $(t, x) \in \mathbb{R} \oplus \mathbb{R}^n$ and Ω open,

$$v_{\lambda,O}(t,x) = u(\lambda^2 t, \lambda O x)$$

is also a solution of the heat equation for $\lambda > 0, O \in O(n)$ and

$$(t,x) \in \Omega_{\lambda,O} := \{(t,x) \in \mathbb{R} \oplus \mathbb{R}^n : (\lambda^2 t, \lambda O x) \in \Omega\}.$$

(c) ¹ Prove that for $u: \Omega \subset \mathbb{R} \oplus \mathbb{R}^n \to \mathbb{R}$ a C^2 solution of the heat equation, then

$$v_{\epsilon}(t,x) := \frac{1}{\left(\sqrt{1+4\epsilon t}\right)^n} \exp\left(\frac{-\epsilon \|x\|^2}{1+4\epsilon t}\right) u\left(\frac{t}{1+4\epsilon t}, \frac{x}{1+4\epsilon t}\right)$$

is also a solution of the heat equation for $\epsilon > 0$ and

$$(t,x) \in \Omega_{\epsilon} := \{(t,x) \in \mathbb{R} \oplus \mathbb{R}^n : t > -(4\epsilon)^{-1}, (\frac{t}{1+4\epsilon t}, \frac{x}{1+4\epsilon t}) \in \Omega\}.$$

Use this symmetry starting from the constant solution to get a non-trivial solution v_{ϵ} of the heat equation. Analyse the behaviour of v_{ϵ} as $t \to -(4\epsilon)^{-1}$.

Solution:

(a) We can easily compute that the Hessian transforms as follows

$$(\mathrm{d}^2 v_O)(x) = O^{\top}(\mathrm{d}^2 u)(Ox)O$$

and therefore

$$\Delta v_O(x) = \operatorname{tr} \left(\mathrm{d}^2 v_O(x) \right) = \operatorname{tr} \left(O^\top \mathrm{d}^2 u(Ox) O \right) = \operatorname{tr} \left(OO^\top (\mathrm{d}^2 u)(Ox) \right) = (\Delta u)(Ox) = 0$$

(b) We compute

$$\partial_t v_{\lambda,O}(t,x) = \lambda^2 (\partial_t u) (\lambda^2 t, \lambda O x)$$

and

$$\Delta_x v_{\lambda,O}(t,x) = \lambda^2 (\Delta_x u) (\lambda^2 t, \lambda O x)$$

26th February 2016

4/5

¹Thank you Yannick Krifka for pointing out a mistake in a previous version of this exercise.

where we used the calculation from (a). Thus

$$\partial_t v_{\lambda,O}(t,x) - \Delta_x v_{\lambda,O}(t,x) = 0.$$

(c) Denote by $s := \frac{1}{\sqrt{1+4\epsilon t}}$ and calculate

$$\begin{aligned} \partial_t v_{\epsilon}(t,x) \\ &= -2n\epsilon s^{n+2} \exp(-\epsilon \|x\|^2 s^2) f(ts^2, xs^2) + s^{n+4} 4\epsilon^2 \|x\|^2 \exp(-\epsilon \|x\|^2 s^2) f(ts^2, xs^2) \\ &- s^{n+4} 4\epsilon \exp(-\epsilon \|x\|^2 s^2) \left\langle x, \partial_x f(ts^2, xs^2) \right\rangle + s^{n+4} \exp(-\epsilon \|x\|^2 s^2) \partial_t f(ts^2, xs^2) \\ \partial_{x_i} v_{\epsilon} &= s^{n+2} (-2\epsilon x_i) \exp(-\epsilon \|x\|^2 s^2) f(ts^2, xs^2) + s^{n+2} \exp(-\epsilon \|x\|^2 s^2) \partial_{x_i} f(ts^2, xs^2) \\ \partial_{x_i x_i} v_{\epsilon}(t,x) \\ &= -2\epsilon s^{n+2} \exp(-\epsilon \|x\|^2 s^2) f(ts^2, xs^2) + s^{n+4} 4\epsilon^2 x_i^2 \exp(-\epsilon \|x\|^2 s^2) f(ts^2, xs^2) \\ &- s^{n+4} 4\epsilon x_i \exp(-\epsilon \|x\|^2 s^2) \partial_{x_i} f(ts^2, xs^2) + s^{n+4} \exp(-\epsilon \|x\|^2 s^2) \partial_{x_i x_i} f(ts^2, xs^2) \end{aligned}$$

for i = 1, ..., n and where $\partial_x f$ denotes the gradient of f with respect to x. Now sum over i to see that v_{ϵ} is solution of the heat equation. Starting from $u(x, t) = c \in \mathbb{R}$, we get

$$v_{\epsilon}(t,x) = \frac{c}{\sqrt{1+4\epsilon t}} \exp\left(\frac{-\epsilon \|x\|^2}{1+4\epsilon t}\right).$$

This is a constant times the fundamental solution, so as $t \to -(4\epsilon)^{-1}$, we see that v_{ϵ} goes to zero for $x \neq 0$, but that for x = 0 there might remain a 'peak'.

1.4. Let $u : \Omega \subset \mathbb{R}^n \to \mathbb{R}$ be a harmonic function and $f : \mathbb{R} \to \mathbb{R}$ a convex function², then $f \circ u$ is subharmonic, i.e.

$$\Delta(f \circ u) \ge 0$$

Solution: We estimate

$$\Delta(f \circ u) = \sum_{i=1}^{n} \partial_{x_i} \partial_{x_i} (f \circ u)$$

= $\sum_{i=1}^{n} \partial_{x_i} (f' \circ u \ \partial_{x_i} u)$
= $\sum_{i=1}^{n} (f'' \circ u \ (\partial_{x_i} u)^2 + f' \circ u \ \partial_{x_i} \partial_{x_i} u)$
= $f'' \circ u \ |\nabla u|^2$
 ≥ 0

²This means $f''(t) \ge 0$ for $t \in \mathbb{R}$.

26th February 2016