2.1. Laplace equation on $C_{0}^{1}\left(\mathbb{R}^{n}\right)$

Let $^{1} f \in C_{0}^{1}\left(\mathbb{R}^{n}\right)$. Define $u=K * f$. Prove that $u \in C^{2}\left(\mathbb{R}^{n}\right)$ and that $\Delta u=f$.
Hint: We already know this result for $f \in C_{0}^{2}\left(\mathbb{R}^{n}\right)$, so you can try to approximate $f \in C_{0}^{1}\left(\mathbb{R}^{n}\right)$ by a sequence of $C_{0}^{2}\left(\mathbb{R}^{n}\right)$ functions.

Solution: Let $f_{k} \in C_{0}^{2}\left(\mathbb{R}^{n}\right)$ be a sequence of functions converging to f in $C_{0}^{1}\left(\mathbb{R}^{n}\right)$. (Such a sequence exists as you can see by using convolution with smooth mollifiers covered later in this class. We can furthermore multiply f_{k} with a smooth cut-off function that is equal to 1 on $\operatorname{supp} f$ and which is supported in the 1 shell $\mathcal{N}_{1} \operatorname{supp} f:=$ $\left\{x \in \mathbb{R}^{n}: \operatorname{dist}(x, \operatorname{supp} f) \leq 1\right\}$, to get that $\operatorname{supp} f_{k} \subset \mathcal{N}_{1} \operatorname{supp} f \subset B_{R}(0)$ for some $R>0$.) That is

$$
\left\|f_{k}-f\right\|_{C^{0}}+\left\|\nabla f_{k}-\nabla f\right\|_{C^{0}} \rightarrow 0
$$

Set $u_{k}:=K * f_{k}$ and we have ${ }^{2} \operatorname{supp} u_{k} \subset \overline{B_{2 R}(0)}$. We have that

$$
\begin{array}{r}
\left\|u_{k}-u\right\|_{C^{0}}+\left\|\partial_{i} u_{k}-K * \partial_{i} f\right\|_{C^{0}}=\left\|K *\left(f_{k}-f\right)\right\|_{C^{0}}+\left\|K *\left(\partial_{i} f_{k}-\partial_{i} f\right)\right\|_{C^{0}} \\
\leq\|K\|_{L^{1}\left(\overline{\left.B_{2 R}(0)\right)}\right.}\left(\left\|f_{k}-f\right\|_{C^{0}}+\left\|\nabla f_{k}-\nabla f\right\|_{C^{0}} \xrightarrow{k \rightarrow \infty} 0\right.
\end{array}
$$

where we used Young's inequality $(p=\infty, q=1, r=\infty$, which is much easier to prove than the case of Exercise 1.1) and the fact that $K \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ i.e. $K \in L^{1}(L)$ for every $L \subset \mathbb{R}^{n}$ compact. Hence $u \in C^{1}\left(\mathbb{R}^{n}\right)$ and $\partial_{i} u=K * \partial_{i} f$. Furthermore, we observe that

$$
\begin{aligned}
\left\|\partial_{i} \partial_{j} u_{k}-\partial_{j} K * \partial_{i} f\right\|_{C^{0}} & =\left\|\partial_{i} K *\left(\partial_{j} f_{k}-\partial_{j} f\right)\right\|_{C^{0}} \\
& \leq\left\|\partial_{i} K\right\|_{L^{1}\left(\overline{\left.B_{2 R}(0)\right)}\right.}\left\|\partial_{j} f_{k}-\partial_{j} f\right\|_{C^{0}} \xrightarrow{k \rightarrow \infty} 0 .
\end{aligned}
$$

We used that $\partial_{i} K \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ and so we get $u \in C^{2}$ and $\partial_{j} \partial_{i} u=\partial_{j} K * \partial_{i} u$ which is continuous as $\partial_{i} f$ is. Hence in particular $\Delta u_{k} \xrightarrow{C^{0}} \Delta u$. So we have

$$
\begin{aligned}
\|\Delta u-f\|_{C^{0}} & \leq\left\|\Delta u-\Delta u_{k}\right\|_{C^{0}}+\left\|\Delta u_{k}-f_{k}\right\|_{C^{0}}+\left\|f_{k}-f\right\|_{C^{0}} \\
& \leq\left\|\Delta u-\Delta u_{k}\right\|_{C^{0}}+0+\left\|f_{k}-f\right\|_{C^{0}} \xrightarrow{k \rightarrow \infty} 0
\end{aligned}
$$

where we used the fact that for $f_{k} \in C_{0}^{2}, \Delta u_{k}=f_{k}$. As the left hand side does not depend on k, we have proven

$$
\Delta u=f
$$

[^0]2.2. Uniqueness of solution Let $\Omega \subset \mathbb{R}^{n}$ be a bounded, open set. Assume for $i=1, \ldots, n$ that $a_{i}, c \in C^{0}(\bar{\Omega})$ with $c(x)<0$ for all $x \in \Omega$. Prove that there is at most one solution $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ to
\[

\left\{$$
\begin{array}{l}
\Delta u+\sum_{n=1}^{n} a_{i} \partial_{i} u+c u=0 \tag{1}\\
\left.u\right|_{\partial \Omega}=f
\end{array}
$$\right.
\]

with $f \in C^{0}(\partial \Omega)$.
Hint: Prove that the problem (1) with $f \equiv 0$ has the unique solution $v \equiv 0$ by showing that $\max v \leq 0$ and $\min v \geq 0$ in this case.

Solution: Assume there were two solutions $u_{1}, u_{2} \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$, then their difference $v=u_{1}-u_{2}$ is a solution to the problem (1) for $f \equiv 0$. Hence, to prove uniqueness, it is enough to prove that $v \equiv 0$. As $\bar{\Omega}$ is compact, $\max v$ is attained in $\bar{\Omega}$.

Assume by contradiction that $\max v>0$. Then there is $x_{0} \in \Omega$ such that $v\left(x_{0}\right)=$ $\max v>0$. As x_{0} is a maximum, we have that

$$
\partial_{i} \partial_{j} v\left(x_{0}\right) \leq 0 \quad \text { and } \quad \partial_{i} v\left(x_{0}\right)=0
$$

Hence $\Delta u \leq 0$, and so

$$
\Delta v\left(x_{0}\right)+\sum_{n=1}^{n} a_{i}\left(x_{0}\right) \partial_{i} v\left(x_{0}\right)+c\left(x_{0}\right) v\left(x_{0}\right)<0
$$

where we used $c<0$. This is a contradiction to (1).
Similarly, we prove $\min v \geq 0$. Hence, $v \equiv 0$.

2.3. Subharmonic functions

Let $\Omega \subset \mathbb{R}^{n}$ be an open subset. Prove that the following statements for $u \in C^{2}(\Omega)$ are equivalent
(i) $\Delta u \geq 0$
(ii) For all $\xi \in \Omega$ and $r>0$ such that $\overline{B_{r}(\xi)} \subset \Omega$, we have

$$
u(\xi) \leq \frac{1}{\omega_{n} r^{n-1}} \int_{\partial B_{r}(\xi)} u \mathrm{~d} S
$$

(iii) For all $\xi \in \Omega$ and $r>0$ such that $\overline{B_{r}(\xi)} \subset \Omega$, we have

$$
u(\xi) \leq \frac{n}{\omega_{n} r^{n}} \int_{B_{r}(\xi)} u \mathrm{~d} x
$$

Hint: $\quad(i) \Rightarrow(i i)$ follows directly from a result seen in the course. For $(i i) \Rightarrow(i i i)$ integrate with respect to r and for $(i i i) \Rightarrow(i)$ argue by contraposition.

Solution: $\quad(i) \Rightarrow(i i)$: In class you saw the identity

$$
\begin{equation*}
u(\xi)=\int_{B_{r}(\xi)}(\psi(|x-\xi|)-\psi(r)) \Delta u(x) \mathrm{d} x+\frac{1}{\omega_{n} r^{n-1}} \int_{\partial B_{r}(\xi)} u \mathrm{~d} S \tag{2}
\end{equation*}
$$

where

$$
\psi(r)=\left\{\begin{array}{cc}
\frac{r^{2-n}}{(2-n) \omega_{n}} \text { for } & n>2 \\
\frac{\log r}{2 \pi} \text { for } & n=2
\end{array}\right.
$$

is the fundamental solution with $r>0$.
As ψ is decreasing and $\Delta u \geq 0$, we have that the first integral in (2) is ≥ 0, thereby getting the inequality in (ii).
$(\boldsymbol{i i}) \Rightarrow(i i i):$ We integrate the inequality

$$
\omega_{n} \rho^{n-1} u(\xi) \leq \int_{\partial B_{\rho}(\xi)} u \mathrm{~d} S
$$

with respect to ρ from 0 to r to get (iii).
$(\boldsymbol{i i i}) \Rightarrow(\boldsymbol{i})$: Assume there is $\xi_{0} \in \Omega$ such that $\Delta u\left(\xi_{0}\right)<0$. Then as Δu is continuous, there is $r>0$ such that $\overline{B_{r}\left(\xi_{0}\right)} \subset \Omega$ and $\Delta u(\xi)<0$ for all $\xi \in B_{r}\left(\xi_{0}\right)$. Hence the first integral in (2) is <0, thus for $0<s<r$ we have

$$
s^{n-1} u\left(\xi_{0}\right)>\frac{1}{\omega_{n}} \int_{\partial B_{s}\left(\xi_{0}\right)} u \mathrm{~d} S
$$

and thus integrating this inequality for s from 0 to r, we get

$$
u\left(\xi_{0}\right)>\frac{n}{\omega_{n} r^{n}} \int_{B_{r}\left(\xi_{0}\right)} u \mathrm{~d} x .
$$

Hence if (i) does not hold, (iii) also does not hold.
2.4. Symmetries continued. Let $n>2$ and $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be harmonic and define v on $\mathbb{R}^{n} \backslash\{0\}$ by

$$
v(x)=\frac{1}{|x|^{n-2}} u\left(\frac{x}{|x|^{2}}\right) .
$$

Prove that v is harmonic. What do you get for u a constant function?
Solution: We first calculate

$$
\partial_{i} v(x)=\partial_{i}\left(\frac{1}{|x|^{n-2}}\right) u+\frac{1}{|x|^{n-2}}\left(\partial_{j} u\right) \partial_{i}\left(\frac{x_{j}}{|x|^{2}}\right)
$$

where the argument of u and $\partial_{j} u$ is always $\frac{x}{|x|^{2}}$ and we summed over $j \in\{1, \ldots, n\}$. Continuing, we get

$$
\begin{aligned}
\partial_{i} \partial_{i} v(x)= & \partial_{i} \partial_{i}\left(\frac{1}{|x|^{n-2}}\right) u+2 \partial_{i}\left(\frac{1}{|x|^{n-2}}\right)\left(\partial_{j} u\right) \partial_{j}\left(\frac{x_{j}}{|x|^{2}}\right) \\
& +\frac{1}{|x|^{n-2}}\left(\partial_{k} \partial_{j} u\right) \partial_{i}\left(\frac{x_{k}}{|x|^{2}}\right) \partial_{i}\left(\frac{x_{j}}{|x|^{2}}\right)+\frac{1}{|x|^{n-2}}\left(\partial_{j} u\right) \partial_{i} \partial_{i}\left(\frac{x_{j}}{|x|^{2}}\right)
\end{aligned}
$$

where again the arguments are all $\frac{x}{|x|^{2}}$ and we sum over j and k. Summing over i, we get

$$
\begin{aligned}
\Delta v(x)= & \Delta\left(\frac{1}{|x|^{n-2}}\right) u+2 \sum_{j}\left\langle\nabla\left(\frac{1}{|x|^{n-2}}\right), \nabla\left(\frac{x_{j}}{\left|x^{2}\right|}\right)\right\rangle\left(\partial_{j} u\right) \\
& +\frac{1}{|x|^{n-2}} \sum_{j, k}\left\langle\nabla\left(\frac{x_{k}}{\left|x^{2}\right|}\right), \nabla\left(\frac{x_{j}}{\left|x^{2}\right|}\right)\right\rangle\left(\partial_{k} \partial_{j} u\right)+\frac{1}{|x|^{n-2}}\left(\partial_{j} u\right) \Delta\left(\frac{x_{j}}{|x|^{2}}\right)
\end{aligned}
$$

where again the arguments are all $\frac{x}{|x|^{2}}$. Now that we have put up calculating derivatives, let us do it now

$$
\partial_{i}\left(\sqrt{\sum_{i} x_{i}^{2}}\right)=\frac{1}{2|x|} 2 x_{i}=\frac{x_{i}}{|x|} .
$$

Hence,

$$
\begin{aligned}
\nabla\left(\frac{1}{|x|^{n-2}}\right) & =-\frac{(n-2) x}{|x|^{n}} \\
\Delta\left(\frac{1}{|x|^{n-2}}\right) & =0 \\
\nabla\left(\frac{x_{j}}{\left|x^{2}\right|}\right) & =\frac{1}{|x|^{2}}\left(e_{j}-2 \frac{x_{j}}{\left|x^{2}\right|} x\right) \\
\Delta\left(\frac{x_{j}}{\left|x^{2}\right|}\right) & =-2(n-2) \frac{x_{j}}{|x|^{4}} .
\end{aligned}
$$

Therefore, we get

$$
\Delta v(x)=0+2 \sum_{j} \frac{n-2}{|x|^{n-2}} x_{j}\left(\partial_{j} u\right)+\frac{1}{|x|^{n-2}} \Delta u-2 \sum_{j} \frac{n-2}{|x|^{n-2}} x_{j}\left(\partial_{j} u\right)=\frac{1}{|x|^{n-2}} \Delta u .
$$

We conclude that v is harmonic if and only if u is harmonic.
For $u \equiv$ const, we get that v is a multiple of the fundamental solution.
2.5. Maximum principle on unbounded domains. Consider the domain $\Omega=\left\{x \in \mathbb{R}^{n}:|x|>1\right\}$ and a harmonic function $u \in C^{2}(\bar{\Omega})$ which has the property $\lim _{r \rightarrow \infty} \sup _{\partial B_{r}(0) \cap \Omega} u=0$.
Prove that $|u|$ attains its maximum and $\max _{\Omega}|u|=\max _{\partial \Omega}|u|$.
Solution: We apply the maximum principle for harmonic functions on $B_{r}(0)$ for $r>1$, to get

$$
\max _{\Omega \cap B_{r}(0)}|u|=\max \left(\max _{\partial \Omega}|u|, \max _{\partial B_{r}(0)}|u|\right)
$$

Let $s=\max _{\partial \Omega}|u|$. If $s>0$, then we can find $R>0$ such that $\max _{\partial B_{r}(0)}|u|<s$ for all $r>R$, and therefore

$$
\sup _{B_{r}(0)}|u|=\lim _{r \rightarrow \infty} \max _{\Omega \cap B_{r}(0)}|u|=\max _{\partial \Omega}|u| .
$$

Hence the maximum is attained on $\partial \Omega$ and we can replace sup by max.
If $s=0$, then we have

$$
\sup _{B_{r}(0)}|u|=\lim _{r \rightarrow \infty} \max _{\Omega \cap B_{r}(0)}|u|=\lim _{r \rightarrow \infty} \max _{\partial B_{r}(0)}|u|=0 .
$$

Therefore $|u| \equiv 0$ and the maximum is attained at any point of Ω.

[^0]: ${ }^{1} C_{0}^{1}\left(\mathbb{R}^{n}\right)$ is the space of functions with continuous first derivative and compact support.
 ${ }^{2}$ This is a fact about the support of convolutions. Check this!

